These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 32413638)

  • 1. Selective, highly efficient extraction of Cr(III), Pb(II) and Fe(III) from complex water environment with a tea residue derived porous gel adsorbent.
    Zhang S; Liu C; Yuan Y; Fan M; Zhang D; Wang D; Xu Y
    Bioresour Technol; 2020 Sep; 311():123520. PubMed ID: 32413638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents.
    Zhou G; Luo J; Liu C; Chu L; Crittenden J
    Water Res; 2018 Mar; 131():246-254. PubMed ID: 29294433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radix Astragali residue-derived porous amino-laced double-network hydrogel for efficient Pb(II) removal: Performance and modeling.
    Qiu Z; Fu K; Yu D; Luo J; Shang J; Luo S; Crittenden JC
    J Hazard Mater; 2022 Sep; 438():129418. PubMed ID: 35780735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavior and mechanism of the adsorption of lead by an eco-friendly porous double-network hydrogel derived from keratin.
    Cao H; Ma X; Wei Z; Tan Y; Chen S; Ye T; Yuan M; Yu J; Wu X; Yin F; Xu F
    Chemosphere; 2022 Feb; 289():133086. PubMed ID: 34848225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast and deep removal of arsenic in high-concentration wastewater: A superior bulk adsorbent of porous Fe
    Yu X; Wei Y; Liu C; Ma J; Liu H; Wei S; Deng W; Xiang J; Luo S
    Chemosphere; 2019 May; 222():258-266. PubMed ID: 30708160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent.
    Zhou G; Luo J; Liu C; Chu L; Ma J; Tang Y; Zeng Z; Luo S
    Water Res; 2016 Feb; 89():151-60. PubMed ID: 26650450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Humic acid-coated hydrated ferric oxides-polymer nanocomposites for heavy metal removal in water.
    Hao L; Li L; Yu S; Liu J
    Sci Total Environ; 2022 Aug; 834():155427. PubMed ID: 35469889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics.
    Wei Y; Wei S; Liu C; Chen T; Tang Y; Ma J; Yin K; Luo S
    Water Res; 2019 Dec; 167():115107. PubMed ID: 31563708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rice husk derived double network hydrogel as efficient adsorbent for Pb(II), Cu(II) and Cd(II) removal in individual and multicomponent systems.
    Ma J; Li T; Liu Y; Cai T; Wei Y; Dong W; Chen H
    Bioresour Technol; 2019 Oct; 290():121793. PubMed ID: 31323508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast adsorption of heavy metal ions by waste cotton fabrics based double network hydrogel and influencing factors insight.
    Ma J; Liu Y; Ali O; Wei Y; Zhang S; Zhang Y; Cai T; Liu C; Luo S
    J Hazard Mater; 2018 Feb; 344():1034-1042. PubMed ID: 30216963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Sorption characteristics of tea waste modified by hydrated ferric oxide toward Pb(II) in water].
    Wan SL; Xue Y; Ma ZZ; Liu GB; Yu YX; Ma MH
    Huan Jing Ke Xue; 2014 Oct; 35(10):3782-8. PubMed ID: 25693383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of a novel nano-Fe
    Ren HS; Cao ZF; Wen X; Wang S; Zhong H; Wu ZK
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):10174-10187. PubMed ID: 30761492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of Pb(II) and Cu(II) from aqueous solution on magnetic porous ferrospinel MnFe2O4.
    Ren Y; Li N; Feng J; Luan T; Wen Q; Li Z; Zhang M
    J Colloid Interface Sci; 2012 Feb; 367(1):415-21. PubMed ID: 22088764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous removal of As(V) and Cr(VI) from water by macroporous anion exchanger supported nanoscale hydrous ferric oxide composite.
    Hua M; Yang B; Shan C; Zhang W; He S; Lv L; Pan B
    Chemosphere; 2017 Mar; 171():126-133. PubMed ID: 28012384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient removal of Cr(III)-poly(acrylic acid) complex by coprecipitation with polyvalent metal ions: Performance, mechanism, and validation.
    Tang Y; Zhao J; Zhou J; Zeng Y; Zhang W; Shi B
    Water Res; 2020 Jul; 178():115807. PubMed ID: 32361347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromium(III) removal from water and wastewater using a carboxylate-functionalized cation exchanger prepared from a lignocellulosic residue.
    Anirudhan TS; Radhakrishnan PG
    J Colloid Interface Sci; 2007 Dec; 316(2):268-76. PubMed ID: 17905262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A green method to synthesize flowerlike Fe(OH)
    Zhao X; Su Y; Li S; Bi Y; Han X
    J Environ Sci (China); 2018 Nov; 73():47-57. PubMed ID: 30290871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The one-step synthesis of a novel metal-organic frameworks for efficient and selective removal of Cr(VI) and Pb(II) from wastewater: Kinetics, thermodynamics and adsorption mechanisms.
    Wang H; Wang S; Wang S; Fu L; Zhang L
    J Colloid Interface Sci; 2023 Jun; 640():230-245. PubMed ID: 36863180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of Pb(II) ions from aqueous solution using activated tea waste: Adsorption on a fixed-bed column.
    Mondal MK
    J Environ Manage; 2009 Aug; 90(11):3266-71. PubMed ID: 19589637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of Pb(II) using the modified lawny grass: mechanism, kinetics, equilibrium and thermodynamic studies.
    Lu D; Cao Q; Cao X; Luo F
    J Hazard Mater; 2009 Jul; 166(1):239-47. PubMed ID: 19097691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.