These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 32413752)
21. Intermolecular copigmentation of anthocyanins with phenolic compounds improves color stability in the model and real blueberry fermented beverage. Wang X; Cheng J; Zhu Y; Li T; Wang Y; Gao X Food Res Int; 2024 Aug; 190():114632. PubMed ID: 38945622 [TBL] [Abstract][Full Text] [Related]
22. Intermolecular interactions between malvidin-3-O-glucoside and caffeic acid: Structural and thermodynamic characterization and its effect on real wine color quality. Wu L; Zhang Y; Fan S; Prejanò M; Marino T; Russo N; Tao Y; Li Y Food Chem; 2024 Sep; 453():139617. PubMed ID: 38788642 [TBL] [Abstract][Full Text] [Related]
23. Terroir Effect on the Phenolic Composition and Chromatic Characteristics of Mencía/Jaen Monovarietal Wines: Bierzo D.O. (Spain) and Dão D.O. (Portugal). Cosme F; Vilela A; Moreira L; Moura C; Enríquez JAP; Filipe-Ribeiro L; Nunes FM Molecules; 2020 Dec; 25(24):. PubMed ID: 33353130 [TBL] [Abstract][Full Text] [Related]
24. Principal component regression analysis of the relation between CIELAB color and monomeric anthocyanins in young Cabernet Sauvignon wines. Han FL; Zhang WN; Pan QH; Zheng CR; Chen HY; Duan CQ Molecules; 2008 Nov; 13(11):2859-70. PubMed ID: 19015625 [TBL] [Abstract][Full Text] [Related]
25. Spectrophotometric study of the copigmentation of malvidin 3-O-glucoside with p-coumaric, vanillic and syringic acids. Malaj N; De Simone BC; Quartarolo AD; Russo N Food Chem; 2013 Dec; 141(4):3614-20. PubMed ID: 23993528 [TBL] [Abstract][Full Text] [Related]
26. Adsorption and biotransformation of anthocyanin glucosides and quercetin glycosides by Oenococcus oeni and Lactobacillus plantarum in model wine solution. Devi A; Konerira Aiyappaa AA; Waterhouse AL J Sci Food Agric; 2020 Mar; 100(5):2110-2120. PubMed ID: 31875958 [TBL] [Abstract][Full Text] [Related]
27. Determination of the thermodynamic parameters of the complex formation between malvidin-3-O-glucoside and polyphenols. Copigmentation effect in red wines. Kunsági-Máté S; Szabó K; Nikfardjam MP; Kollár L J Biochem Biophys Methods; 2006 Nov; 69(1-2):113-9. PubMed ID: 16730376 [TBL] [Abstract][Full Text] [Related]
28. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) anthocyanins. 2. Anthocyanins and pigmented polymers in wine. Cortell JM; Halbleib M; Gallagher AV; Righetti TL; Kennedy JA J Agric Food Chem; 2007 Aug; 55(16):6585-95. PubMed ID: 17636934 [TBL] [Abstract][Full Text] [Related]
29. Structural features of copigmentation of oenin with different polyphenol copigments. Teixeira N; Cruz L; Brás NF; Mateus N; Ramos MJ; de Freitas V J Agric Food Chem; 2013 Jul; 61(28):6942-8. PubMed ID: 23829187 [TBL] [Abstract][Full Text] [Related]
30. Copigmentation between malvidin-3-O-glucoside and hydroxycinnamic acids in red wine model solutions: Investigations with experimental and theoretical methods. Zhang B; He F; Zhou PP; Liu Y; Duan CQ Food Res Int; 2015 Dec; 78():313-320. PubMed ID: 28433297 [TBL] [Abstract][Full Text] [Related]
31. Malvidin-3- O-glucoside Chemical Behavior in the Wine pH Range. Forino M; Gambuti A; Luciano P; Moio L J Agric Food Chem; 2019 Jan; 67(4):1222-1229. PubMed ID: 30604613 [TBL] [Abstract][Full Text] [Related]
32. Supramolecular Study of the Interactions between Malvidin-3- Torres-Rochera B; Manjón E; Brás NF; Escribano-Bailón MT; García-Estévez I J Agric Food Chem; 2024 Jan; 72(4):1894-1901. PubMed ID: 36748888 [TBL] [Abstract][Full Text] [Related]
34. Mannoproteins modulate olfactrory perception and copigmentation of organoleptic-active-components in wines: Effects and potential molecular mechanisms. Guo Z; Dong H; Lin J; Hu Y; Ren D; Yi L; Li S Food Res Int; 2024 Oct; 194():114883. PubMed ID: 39232555 [TBL] [Abstract][Full Text] [Related]
35. Intramolecular copigmentation in malvidin-3-O-(6-O-p-coumaryl)-glucoside: Insights from experimental and theoretical study. Zhao X; He XM; Liu F; Duan CQ; He F Food Chem; 2022 Oct; 391():133255. PubMed ID: 35609464 [TBL] [Abstract][Full Text] [Related]
36. Stability Enhancement of Anthocyanins from Blackcurrant ( Azman EM; Yusof N; Chatzifragkou A; Charalampopoulos D Molecules; 2022 Aug; 27(17):. PubMed ID: 36080257 [TBL] [Abstract][Full Text] [Related]
37. Tuning color variation in grape anthocyanins at the molecular scale. Rustioni L; Di Meo F; Guillaume M; Failla O; Trouillas P Food Chem; 2013 Dec; 141(4):4349-57. PubMed ID: 23993625 [TBL] [Abstract][Full Text] [Related]
38. Stabilizing and Modulating Color by Copigmentation: Insights from Theory and Experiment. Trouillas P; Sancho-García JC; De Freitas V; Gierschner J; Otyepka M; Dangles O Chem Rev; 2016 May; 116(9):4937-82. PubMed ID: 26959943 [TBL] [Abstract][Full Text] [Related]
39. Association between modification of phenolic profiling and development of wine color during alcohol fermentation. Li SY; Liu PT; Pan QH; Shi Y; Duan CQ J Food Sci; 2015 Apr; 80(4):C703-10. PubMed ID: 25807971 [TBL] [Abstract][Full Text] [Related]
40. Comprehensive colorimetric study of anthocyanic copigmentation in model solutions. Effects of pH and molar ratio. Gordillo B; Rodríguez-Pulido FJ; Escudero-Gilete ML; González-Miret ML; Heredia FJ J Agric Food Chem; 2012 Mar; 60(11):2896-905. PubMed ID: 22375623 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]