These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32413811)

  • 1. Investigating the microbial-influenced corrosion of UNS S32750 stainless-steel base alloy and weld seams by biofilm-forming marine bacterium Macrococcus equipercicus.
    Arun D; Vimala R; Devendranath Ramkumar K
    Bioelectrochemistry; 2020 Oct; 135():107546. PubMed ID: 32413811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study.
    Yuan SJ; Pehkonen SO
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):87-99. PubMed ID: 17582747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofilm colonization dynamics and its influence on the corrosion resistance of austenitic UNS S31603 stainless steel exposed to Gulf of Mexico seawater.
    Acuña N; Ortega-Morales BO; Valadez-González A
    Mar Biotechnol (NY); 2006; 8(1):62-70. PubMed ID: 16453199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm.
    Xu D; Xia J; Zhou E; Zhang D; Li H; Yang C; Li Q; Lin H; Li X; Yang K
    Bioelectrochemistry; 2017 Feb; 113():1-8. PubMed ID: 27578208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial corrosion of DSS 2205 in an acidic chloride environment under continuous flow.
    Tran TTT; Kannoorpatti K; Padovan A; Thennadil S; Nguyen K
    PLoS One; 2021; 16(5):e0251524. PubMed ID: 33979409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofilm activity on corrosion of API 5L X65 steel weld bead.
    Liduino VS; Lutterbach MTS; Sérvulo EFC
    Colloids Surf B Biointerfaces; 2018 Dec; 172():43-50. PubMed ID: 30130636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of microbiologically influenced corrosion of 304 stainless steel by aerobic thermoacidophilic archaeon Metallosphaera cuprina.
    Qian H; Liu S; Wang P; Huang Y; Lou Y; Huang L; Jiang C; Zhang D
    Bioelectrochemistry; 2020 Dec; 136():107635. PubMed ID: 32866835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stainless steels can be cathodically protected using energy stored at the marine sediment/seawater interface.
    Orfei LH; Simison S; Busalmen JP
    Environ Sci Technol; 2006 Oct; 40(20):6473-8. PubMed ID: 17120583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm.
    Li H; Zhou E; Zhang D; Xu D; Xia J; Yang C; Feng H; Jiang Z; Li X; Gu T; Yang K
    Sci Rep; 2016 Feb; 6():20190. PubMed ID: 26846970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing the Corrosion Resistance in the UNS S32750 Super Duplex Steel Welded Joints through Hybrid GTAW-Laser Welding and Nitrogen.
    Videira AM; Mendes WR; Ventrella VA; Calliari I
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Marine prosthecate bacteria involved in the ennoblement of stainless steel.
    Baker PW; Ito K; Watanabe K
    Environ Microbiol; 2003 Oct; 5(10):925-32. PubMed ID: 14510846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marine bacterial community analysis on 316L stainless steel coupons by Illumina MiSeq sequencing.
    Capão A; Moreira-Filho P; Garcia M; Bitati S; Procópio L
    Biotechnol Lett; 2020 Aug; 42(8):1431-1448. PubMed ID: 32472186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of the in vitro corrosion behavior and cytotoxicity of a superferritic stainless steel, a Ti-13Nb-13Zr alloy, and an austenitic stainless steel in Hank's solution.
    Assis SL; Rogero SO; Antunes RA; Padilha AF; Costa I
    J Biomed Mater Res B Appl Biomater; 2005 Apr; 73(1):109-16. PubMed ID: 15660438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of biofilm formation for corrosion inhibition of SAE 1018 steel by axenic aerobic biofilms.
    Jayaraman A; Cheng ET; Earthman JC; Wood TK
    J Ind Microbiol Biotechnol; 1997 Jun; 18(6):396-401. PubMed ID: 9248069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of sunlight on the localized corrosion of UNS S31600 in natural seawater.
    Eashwar M; Subramanian G; Palanichamy S; Rajagopal G
    Biofouling; 2011 Sep; 27(8):837-49. PubMed ID: 21819315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of W-TiO2 composite to control microbiologically influenced corrosion on galvanized steel.
    Basheer R; Ganga G; Chandran RK; Nair GM; Nair MB; Shibli SM
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5615-25. PubMed ID: 22983597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerating effect of pyocyanin on microbiologically influenced corrosion of 304 stainless steel by the Pseudomonas aeruginosa biofilm.
    Li Z; Huang L; Hao W; Yang J; Qian H; Zhang D
    Bioelectrochemistry; 2022 Aug; 146():108130. PubMed ID: 35397438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerated Corrosion of 316L Stainless Steel Caused by
    Kalnaowakul P; Xu D; Rodchanarowan A
    ACS Appl Bio Mater; 2020 Apr; 3(4):2185-2192. PubMed ID: 35025270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Filler Metal on Electrochemical Characteristics of a Laser-Welded CoCrMoW Alloy Used in Prosthodontics.
    Reimann L; Brytan Z; Jania G
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The enrichment of surface passive film on stainless steel during biofilm development in coastal seawater.
    Eashwar M; Sreedhar G; Lakshman Kumar A; Hariharasuthan R; Kennedy J
    Biofouling; 2015; 31(6):511-25. PubMed ID: 26222313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.