These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 32414006)
1. Biochemical and Genomic Characterization of the Cypermethrin-Degrading and Biosurfactant-Producing Bacterial Strains Isolated from Marine Sediments of the Chilean Northern Patagonia. Aguila-Torres P; Maldonado J; Gaete A; Figueroa J; González A; Miranda R; González-Stegmaier R; Martin C; González M Mar Drugs; 2020 May; 18(5):. PubMed ID: 32414006 [TBL] [Abstract][Full Text] [Related]
2. Occurrence of antiparasitic pesticides in sediments near salmon farms in the northern Chilean Patagonia. Tucca F; Moya H; Pozo K; Borghini F; Focardi S; Barra R Mar Pollut Bull; 2017 Feb; 115(1-2):465-468. PubMed ID: 27894725 [TBL] [Abstract][Full Text] [Related]
3. Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance). Hassanshahian M Mar Pollut Bull; 2014 Sep; 86(1-2):361-366. PubMed ID: 25037876 [TBL] [Abstract][Full Text] [Related]
4. Bacterial community analysis of cypermethrin enrichment cultures and bioremediation of cypermethrin contaminated soils. Akbar S; Sultan S; Kertesz M J Basic Microbiol; 2015 Jul; 55(7):819-29. PubMed ID: 25656248 [TBL] [Abstract][Full Text] [Related]
5. Presence of esterase and laccase in Bacillus subtilis facilitates biodegradation and detoxification of cypermethrin. Gangola S; Sharma A; Bhatt P; Khati P; Chaudhary P Sci Rep; 2018 Aug; 8(1):12755. PubMed ID: 30143738 [TBL] [Abstract][Full Text] [Related]
6. Microbial flora analysis for the degradation of beta-cypermethrin. Qi Z; Wei Z Environ Sci Pollut Res Int; 2017 Mar; 24(7):6554-6562. PubMed ID: 28074371 [TBL] [Abstract][Full Text] [Related]
7. [Isolation, identification and characterization of cypermethrin-degrading strain L12]. Qu J; Wang H; Shi Y; Li K; Wang S; Yan Y Wei Sheng Wu Xue Bao; 2011 Apr; 51(4):510-7. PubMed ID: 21796986 [TBL] [Abstract][Full Text] [Related]
8. Isolation and characterization of synthetic pyrethroids-degrading bacterial strains from agricultural soil. Uzma B; Alia F; Qureshi NA; Shakeela Q; Asima B; Ahmed S; Hayat A; Rehman MU Braz J Biol; 2023; 83():e271790. PubMed ID: 37132742 [TBL] [Abstract][Full Text] [Related]
9. Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Menezes Bento F; de Oliveira Camargo FA; Okeke BC; Frankenberger WT Microbiol Res; 2005; 160(3):249-55. PubMed ID: 16035236 [TBL] [Abstract][Full Text] [Related]
10. Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment. Lee DW; Lee H; Kwon BO; Khim JS; Yim UH; Kim BS; Kim JJ Environ Pollut; 2018 Oct; 241():254-264. PubMed ID: 29807284 [TBL] [Abstract][Full Text] [Related]
11. Biodegradation of cypermethrin by a novel Catellibacterium sp. strain CC-5 isolated from contaminated soil. Zhao H; Geng Y; Chen L; Tao K; Hou T Can J Microbiol; 2013 May; 59(5):311-7. PubMed ID: 23647343 [TBL] [Abstract][Full Text] [Related]
12. Determination of cypermethrin degradation potential of soil bacteria along with plant growth-promoting characteristics. Akbar S; Sultan S; Kertesz M Curr Microbiol; 2015 Jan; 70(1):75-84. PubMed ID: 25194282 [TBL] [Abstract][Full Text] [Related]
13. Enhanced biodegradation of endosulfan and its major metabolite endosulfate by a biosurfactant producing bacterium. Odukkathil G; Vasudevan N J Environ Sci Health B; 2013; 48(6):462-9. PubMed ID: 23452211 [TBL] [Abstract][Full Text] [Related]
14. Occurrence and Distribution of Deltamethrin and Diflubenzuron in Surface Sediments from the Reloncaví Fjord and the Chiloé Inner-Sea (~ 39.5ºS -43ºS), Chilean Patagonia. Placencia JA; Saavedra F; Fernández J; Aguirre C Bull Environ Contam Toxicol; 2018 Mar; 100(3):384-388. PubMed ID: 29307113 [TBL] [Abstract][Full Text] [Related]
15. Biogeographical distribution analysis of hydrocarbon degrading and biosurfactant producing genes suggests that near-equatorial biomes have higher abundance of genes with potential for bioremediation. Oliveira JS; Araújo WJ; Figueiredo RM; Silva-Portela RCB; de Brito Guerra A; da Silva Araújo SC; Minnicelli C; Carlos AC; de Vasconcelos ATR; Freitas AT; Agnez-Lima LF BMC Microbiol; 2017 Jul; 17(1):168. PubMed ID: 28750626 [TBL] [Abstract][Full Text] [Related]
16. Importance of Gram-positive naphthalene-degrading bacteria in oil-contaminated tropical marine sediments. Zhuang WQ; Tay JH; Maszenan AM; Krumholz LR; Tay ST Lett Appl Microbiol; 2003; 36(4):251-7. PubMed ID: 12641721 [TBL] [Abstract][Full Text] [Related]
17. Biodegradation α-endosulfan and α-cypermethrin by Acinetobacter schindleri B7 isolated from the microflora of grasshopper (Poecilimon tauricola). Gur Ozdal O; Algur OF Arch Microbiol; 2022 Feb; 204(3):159. PubMed ID: 35113233 [TBL] [Abstract][Full Text] [Related]
18. Biodegradation of endosulfan isomers and its metabolite endosulfate by two biosurfactant producing bacterial strains of Bordetella petrii. Odukkathil G; Vasudevan N J Environ Sci Health B; 2015; 50(2):81-9. PubMed ID: 25587777 [TBL] [Abstract][Full Text] [Related]
19. Isolation and characterization of a Sphingomonas sp. strain F-7 degrading fenvalerate and its use in bioremediation of contaminated soil. Yu FB; Shan SD; Luo LP; Guan LB; Qin H J Environ Sci Health B; 2013; 48(3):198-207. PubMed ID: 23356341 [TBL] [Abstract][Full Text] [Related]