These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32414006)

  • 21. Mycoremediation of oxytetracycline by marine fungi mycelium isolated from salmon farming areas in the south of Chile.
    Ahumada-Rudolph R; Novoa V; Becerra J; Cespedes C; Cabrera-Pardo JR
    Food Chem Toxicol; 2021 Jun; 152():112198. PubMed ID: 33857548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacterial Diversity and Bioremediation Potential of the Highly Contaminated Marine Sediments at El-Max District (Egypt, Mediterranean Sea).
    Amer RA; Mapelli F; El Gendi HM; Barbato M; Goda DA; Corsini A; Cavalca L; Fusi M; Borin S; Daffonchio D; Abdel-Fattah YR
    Biomed Res Int; 2015; 2015():981829. PubMed ID: 26273661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants.
    Mnif I; Mnif S; Sahnoun R; Maktouf S; Ayedi Y; Ellouze-Chaabouni S; Ghribi D
    Environ Sci Pollut Res Int; 2015 Oct; 22(19):14852-61. PubMed ID: 25994261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution of bacterial polycyclic aromatic hydrocarbon (PAH) ring-hydroxylating dioxygenases genes in oilfield soils and mangrove sediments explored by gene-targeted metagenomics.
    Liang C; Huang Y; Wang Y; Ye Q; Zhang Z; Wang H
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2427-2440. PubMed ID: 30661109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [The diversity of alkane degrading bacteria in the enrichments with deep sea sediment of the South China Sea].
    Liu Z; Shao ZZ
    Wei Sheng Wu Xue Bao; 2007 Oct; 47(5):869-73. PubMed ID: 18062265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Process optimization of cypermethrin biodegradation by regression analysis and parametric modeling along with biochemical degradation pathway.
    Malla MA; Dubey A; Kumar A; Vennapu DR; Upadhyay N; Pradhan D; Pradhan RC; Yadav S
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):77418-77427. PubMed ID: 35678967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sediment microbes of deep-sea bioherms on the northwest shelf of Australia.
    Johnson JE; Hill RT
    Microb Ecol; 2003 Jul; 46(1):55-61. PubMed ID: 12739077
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of a cypermethrin-degrading Methylobacterium sp. strain A-1 and molecular cloning of its carboxylesterase gene.
    Diegelmann C; Weber J; Heinzel-Wieland R; Kemme M
    J Basic Microbiol; 2015 Nov; 55(11):1245-54. PubMed ID: 26131623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient biodegradation of 3-phenoxybenzoic acid and pyrethroid pesticides by the novel strain
    Tang J; Hu Q; Liu B; Lei D; Chen T; Sun Q; Zeng C; Zhang Q
    Can J Microbiol; 2019 Nov; 65(11):795-804. PubMed ID: 31238002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Marinobacter sp. from marine sediments produce highly stable surface-active agents for combatting marine oil spills.
    Raddadi N; Giacomucci L; Totaro G; Fava F
    Microb Cell Fact; 2017 Nov; 16(1):186. PubMed ID: 29096660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isomerization and biodegradation of beta-cypermethrin by Pseudomonas aeruginosa CH7 with biosurfactant production.
    Zhang C; Wang S; Yan Y
    Bioresour Technol; 2011 Jul; 102(14):7139-46. PubMed ID: 21570279
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biosurfactant-induced remediation of contaminated marine sediments: Current knowledge and future perspectives.
    Dell'Anno F; Sansone C; Ianora A; Dell'Anno A
    Mar Environ Res; 2018 Jun; 137():196-205. PubMed ID: 29615275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unexplored Brazilian oceanic island host high salt tolerant biosurfactant-producing bacterial strains.
    da Silva FS; Pylro VS; Fernandes PL; Barcelos GS; Kalks KH; Schaefer CE; Tótola MR
    Extremophiles; 2015 May; 19(3):561-72. PubMed ID: 25701018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Screening of biosurfactant producers from petroleum hydrocarbon contaminated sources in cold marine environments.
    Cai Q; Zhang B; Chen B; Zhu Z; Lin W; Cao T
    Mar Pollut Bull; 2014 Sep; 86(1-2):402-410. PubMed ID: 25034191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation and characterization of biosurfactant-producing Alcanivorax strains: hydrocarbon accession strategies and alkane hydroxylase gene analysis.
    Olivera NL; Nievas ML; Lozada M; Del Prado G; Dionisi HM; Siñeriz F
    Res Microbiol; 2009; 160(1):19-26. PubMed ID: 18983915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biosurfactant Production in Sub-Oxic Conditions Detected in Hydrocarbon-Degrading Isolates from Marine and Estuarine Sediments.
    Domingues PM; Oliveira V; Serafim LS; Gomes NCM; Cunha Â
    Int J Environ Res Public Health; 2020 Mar; 17(5):. PubMed ID: 32156011
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation of naphthalene-degrading bacteria from tropical marine sediments.
    Zhuang WQ; Tay JH; Maszenan AM; Tay ST
    Water Sci Technol; 2003; 47(1):303-8. PubMed ID: 12578210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits.
    Pacwa-Płociniczak M; Płociniczak T; Iwan J; Żarska M; Chorążewski M; Dzida M; Piotrowska-Seget Z
    J Environ Manage; 2016 Mar; 168():175-84. PubMed ID: 26708648
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Specific 16S rDNA sequences associated with naphthalene degradation under sulfate-reducing conditions in harbor sediments.
    Hayes LA; Lovley DR
    Microb Ecol; 2002 Jan; 43(1):134-45. PubMed ID: 11984635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation and molecular characterization of biosurfactant producing yeasts from the soil samples contaminated with petroleum derivatives.
    Yalçın HT; Ergin-Tepebaşı G; Uyar E
    J Basic Microbiol; 2018 Sep; 58(9):782-792. PubMed ID: 29938807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.