These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
386 related articles for article (PubMed ID: 32414019)
1. Maleamic Acid as an Organic Anode Material in Lithium-Ion Batteries. Atsbeha Kahsay B; Wang FM; Hailu AG; Su CH Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32414019 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of One-Dimensional Mesoporous Ag Nanoparticles-Modified TiO Zhang Y; Li J; Li W; Kang D Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31426615 [TBL] [Abstract][Full Text] [Related]
3. Lithium and Potassium Cations Affect the Performance of Maleamate-Based Organic Anode Materials for Potassium- and Lithium-Ion Batteries. Guji KW; Chien WC; Wang FM; Ramar A; Chemere EB; Tiong L; Merinda L Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835884 [TBL] [Abstract][Full Text] [Related]
4. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. Huang G; Zhang F; Du X; Qin Y; Yin D; Wang L ACS Nano; 2015 Feb; 9(2):1592-9. PubMed ID: 25629650 [TBL] [Abstract][Full Text] [Related]
5. A New CuO-Fe Di Lecce D; Verrelli R; Campanella D; Marangon V; Hassoun J ChemSusChem; 2017 Apr; 10(7):1607-1615. PubMed ID: 28074612 [TBL] [Abstract][Full Text] [Related]
6. Rapid thermal deposited GeSe nanowires as a promising anode material for lithium-ion and sodium-ion batteries. Wang K; Liu M; Huang D; Li L; Feng K; Zhao L; Li J; Jiang F J Colloid Interface Sci; 2020 Jul; 571():387-397. PubMed ID: 32213356 [TBL] [Abstract][Full Text] [Related]
7. Tetrathiafulvalene-Based Metal-Organic Framework as a High-Performance Anode for Lithium-Ion Batteries. Weng YG; Yin WY; Jiang M; Hou JL; Shao J; Zhu QY; Dai J ACS Appl Mater Interfaces; 2020 Nov; 12(47):52615-52623. PubMed ID: 33170613 [TBL] [Abstract][Full Text] [Related]
8. Carbonyl-rich Poly(pyrene-4,5,9,10-tetraone Sulfide) as Anode Materials for High-Performance Li and Na-Ion Batteries. Li K; Xu S; Han D; Si Z; Wang HG Chem Asian J; 2021 Jul; 16(14):1973-1978. PubMed ID: 34057815 [TBL] [Abstract][Full Text] [Related]
9. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery. Chen A; Li C; Tang R; Yin L; Qi Y Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242 [TBL] [Abstract][Full Text] [Related]
10. Facile synthesis of one-dimensional vanadyl acetate nanobelts toward a novel anode for lithium storage. Wen N; Chen S; Li X; Zhang K; Feng J; Zhou Z; Fan Q; Kuang Q; Dong Y; Zhao Y Dalton Trans; 2021 Sep; 50(33):11568-11578. PubMed ID: 34351346 [TBL] [Abstract][Full Text] [Related]
11. Nitrogen-doped porous carbon microspheres for high-rate anode material in lithium-ion batteries. Gao Y; Qiu X; Wang X; Chen X; Gu A; Yu Z Nanotechnology; 2020 Apr; 31(15):155702. PubMed ID: 31860901 [TBL] [Abstract][Full Text] [Related]
12. Co3V2O8 Sponge Network Morphology Derived from Metal-Organic Framework as an Excellent Lithium Storage Anode Material. Soundharrajan V; Sambandam B; Song J; Kim S; Jo J; Kim S; Lee S; Mathew V; Kim J ACS Appl Mater Interfaces; 2016 Apr; 8(13):8546-53. PubMed ID: 26983348 [TBL] [Abstract][Full Text] [Related]
13. A Cyclized Polyacrylonitrile Anode for Alkali Metal Ion Batteries. Zhang W; Sun M; Yin J; Abou-Hamad E; Schwingenschlögl U; Costa PMFJ; Alshareef HN Angew Chem Int Ed Engl; 2021 Jan; 60(3):1355-1363. PubMed ID: 33017482 [TBL] [Abstract][Full Text] [Related]
14. A Highly Immobilized Organic Anode Material for High Performance Rechargeable Lithium Batteries. Zhang S; Ren S; Han D; Xiao M; Wang S; Sun L; Meng Y ACS Appl Mater Interfaces; 2020 Aug; 12(32):36237-36246. PubMed ID: 32689786 [TBL] [Abstract][Full Text] [Related]
15. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
16. Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries. Wang SX; Yang L; Stubbs LP; Li X; He C ACS Appl Mater Interfaces; 2013 Dec; 5(23):12275-82. PubMed ID: 24256294 [TBL] [Abstract][Full Text] [Related]
17. Amorphous cobalt silicate nanobelts@carbon composites as a stable anode material for lithium ion batteries. Cheng W; Rechberger F; Ilari G; Ma H; Lin WI; Niederberger M Chem Sci; 2015 Dec; 6(12):6908-6915. PubMed ID: 28757979 [TBL] [Abstract][Full Text] [Related]
18. Facile synthesis of perovskite CeMnO Yue B; Hu Q; Ji L; Wang Y; Liu J RSC Adv; 2019 Nov; 9(65):38271-38279. PubMed ID: 35541806 [TBL] [Abstract][Full Text] [Related]
19. Regulating the Electronic Configuration of Spinel Zinc Manganate Derived from Metal-Organic Frameworks: Controlled Synthesis and Application in Anode Materials for Lithium-Ion Batteries. Du W; Liu J; Zeb A; Lin X ACS Appl Mater Interfaces; 2022 Aug; 14(33):37652-37666. PubMed ID: 35960813 [TBL] [Abstract][Full Text] [Related]
20. Phenolic resin-grafted reduced graphene oxide as a highly stable anode material for lithium ion batteries. Li M; Song H; Chen X; Zhou J; Ma Z Phys Chem Chem Phys; 2015 Feb; 17(5):3250-60. PubMed ID: 25521487 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]