BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32414072)

  • 1. High Affinity Binding of N2-Modified Guanine Derivatives Significantly Disrupts the Ligand Binding Pocket of the Guanine Riboswitch.
    Matyjasik MM; Hall SD; Batey RT
    Molecules; 2020 May; 25(10):. PubMed ID: 32414072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain.
    Gilbert SD; Stoddard CD; Wise SJ; Batey RT
    J Mol Biol; 2006 Jun; 359(3):754-68. PubMed ID: 16650860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and antimicrobial action of purine analogues that bind Guanine riboswitches.
    Kim JN; Blount KF; Puskarz I; Lim J; Link KH; Breaker RR
    ACS Chem Biol; 2009 Nov; 4(11):915-27. PubMed ID: 19739679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cotranscriptional RNA strand exchange underlies the gene regulation mechanism in a purine-sensing transcriptional riboswitch.
    Cheng L; White EN; Brandt NL; Yu AM; Chen AA; Lucks JB
    Nucleic Acids Res; 2022 Nov; 50(21):12001-12018. PubMed ID: 35348734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis of the purine riboswitch aptamer domain.
    Gilbert SD; Love CE; Edwards AL; Batey RT
    Biochemistry; 2007 Nov; 46(46):13297-309. PubMed ID: 17960911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs.
    Serganov A; Yuan YR; Pikovskaya O; Polonskaia A; Malinina L; Phan AT; Hobartner C; Micura R; Breaker RR; Patel DJ
    Chem Biol; 2004 Dec; 11(12):1729-41. PubMed ID: 15610857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand recognition determinants of guanine riboswitches.
    Mulhbacher J; Lafontaine DA
    Nucleic Acids Res; 2007; 35(16):5568-80. PubMed ID: 17704135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive and specific detection of ligands using engineered riboswitches.
    Morse DP; Nevins CE; Aggrey-Fynn J; Bravo RJ; Pfaeffle HOI; Laney JE
    J Biotechnol; 2018 Apr; 272-273():22-32. PubMed ID: 29518463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand Binding Mechanism and Its Relationship with Conformational Changes in Adenine Riboswitch.
    Hu G; Li H; Xu S; Wang J
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32168940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs.
    Noeske J; Richter C; Grundl MA; Nasiri HR; Schwalbe H; Wöhnert J
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1372-7. PubMed ID: 15665103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation.
    Steinert H; Sochor F; Wacker A; Buck J; Helmling C; Hiller F; Keyhani S; Noeske J; Grimm S; Rudolph MM; Keller H; Mooney RA; Landick R; Suess B; Fürtig B; Wöhnert J; Schwalbe H
    Elife; 2017 May; 6():. PubMed ID: 28541183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches.
    Wacker A; Buck J; Richter C; Schwalbe H; Wöhnert J
    RNA Biol; 2012 May; 9(5):672-80. PubMed ID: 22647526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive ligand binding by the purine riboswitch in the recognition of guanine and adenine analogs.
    Gilbert SD; Reyes FE; Edwards AL; Batey RT
    Structure; 2009 Jun; 17(6):857-68. PubMed ID: 19523903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Riboswitch structure: an internal residue mimicking the purine ligand.
    Delfosse V; Bouchard P; Bonneau E; Dagenais P; Lemay JF; Lafontaine DA; Legault P
    Nucleic Acids Res; 2010 Apr; 38(6):2057-68. PubMed ID: 20022916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch.
    Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule analysis reveals multi-state folding of a guanine riboswitch.
    Chandra V; Hannan Z; Xu H; Mandal M
    Nat Chem Biol; 2017 Feb; 13(2):194-201. PubMed ID: 27941758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purine analogs targeting the guanine riboswitch as potential antibiotics against Clostridioides difficile.
    Yan LH; Le Roux A; Boyapelly K; Lamontagne AM; Archambault MA; Picard-Jean F; Lalonde-Seguin D; St-Pierre E; Najmanovich RJ; Fortier LC; Lafontaine D; Marsault É
    Eur J Med Chem; 2018 Jan; 143():755-768. PubMed ID: 29220796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variants of the guanine riboswitch class exhibit altered ligand specificities for xanthine, guanine, or 2'-deoxyguanosine.
    Hamal Dhakal S; Panchapakesan SSS; Slattery P; Roth A; Breaker RR
    Proc Natl Acad Sci U S A; 2022 May; 119(22):e2120246119. PubMed ID: 35622895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.