These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 32414092)
1. An Ice-Binding Protein from an Antarctic Ascomycete Is Fine-Tuned to Bind to Specific Water Molecules Located in the Ice Prism Planes. Yamauchi A; Arai T; Kondo H; Sasaki YC; Tsuda S Biomolecules; 2020 May; 10(5):. PubMed ID: 32414092 [TBL] [Abstract][Full Text] [Related]
2. Ice-binding proteins from the fungus Antarctomyces psychrotrophicus possibly originate from two different bacteria through horizontal gene transfer. Arai T; Fukami D; Hoshino T; Kondo H; Tsuda S FEBS J; 2019 Mar; 286(5):946-962. PubMed ID: 30548092 [TBL] [Abstract][Full Text] [Related]
3. Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. Xiao N; Suzuki K; Nishimiya Y; Kondo H; Miura A; Tsuda S; Hoshino T FEBS J; 2010 Jan; 277(2):394-403. PubMed ID: 20030710 [TBL] [Abstract][Full Text] [Related]
4. Characterization of microbial antifreeze protein with intermediate activity suggests that a bound-water network is essential for hyperactivity. Khan NMU; Arai T; Tsuda S; Kondo H Sci Rep; 2021 Mar; 11(1):5971. PubMed ID: 33727595 [TBL] [Abstract][Full Text] [Related]
5. Polypentagonal ice-like water networks emerge solely in an activity-improved variant of ice-binding protein. Mahatabuddin S; Fukami D; Arai T; Nishimiya Y; Shimizu R; Shibazaki C; Kondo H; Adachi M; Tsuda S Proc Natl Acad Sci U S A; 2018 May; 115(21):5456-5461. PubMed ID: 29735675 [TBL] [Abstract][Full Text] [Related]
6. Hydrophobic ice-binding sites confer hyperactivity of an antifreeze protein from a snow mold fungus. Cheng J; Hanada Y; Miura A; Tsuda S; Kondo H Biochem J; 2016 Nov; 473(21):4011-4026. PubMed ID: 27613857 [TBL] [Abstract][Full Text] [Related]
7. Effects of hydrophobic and hydrogen-bond interactions on the binding affinity of antifreeze proteins to specific ice planes. Lee H J Mol Graph Model; 2019 Mar; 87():48-55. PubMed ID: 30502671 [TBL] [Abstract][Full Text] [Related]
8. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site. Middleton AJ; Marshall CB; Faucher F; Bar-Dolev M; Braslavsky I; Campbell RL; Walker VK; Davies PL J Mol Biol; 2012 Mar; 416(5):713-24. PubMed ID: 22306740 [TBL] [Abstract][Full Text] [Related]
9. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences. Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370 [TBL] [Abstract][Full Text] [Related]
10. Saturn-Shaped Ice Burst Pattern and Fast Basal Binding of an Ice-Binding Protein from an Antarctic Bacterial Consortium. Kaleda A; Haleva L; Sarusi G; Pinsky T; Mangiagalli M; Bar Dolev M; Lotti M; Nardini M; Braslavsky I Langmuir; 2019 Jun; 35(23):7337-7346. PubMed ID: 30198719 [TBL] [Abstract][Full Text] [Related]
11. Structure and application of antifreeze proteins from Antarctic bacteria. Muñoz PA; Márquez SL; González-Nilo FD; Márquez-Miranda V; Blamey JM Microb Cell Fact; 2017 Aug; 16(1):138. PubMed ID: 28784139 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the ice-binding protein from Arctic yeast Leucosporidium sp. AY30. Park KS; Do H; Lee JH; Park SI; Kim Ej; Kim SJ; Kang SH; Kim HJ Cryobiology; 2012 Jun; 64(3):286-96. PubMed ID: 22426061 [TBL] [Abstract][Full Text] [Related]
13. LabVIEW-operated novel nanoliter osmometer for ice binding protein investigations. Braslavsky I; Drori R J Vis Exp; 2013 Feb; (72):e4189. PubMed ID: 23407403 [TBL] [Abstract][Full Text] [Related]
14. Ice-binding proteins and the 'domain of unknown function' 3494 family. Vance TDR; Bayer-Giraldi M; Davies PL; Mangiagalli M FEBS J; 2019 Mar; 286(5):855-873. PubMed ID: 30680879 [TBL] [Abstract][Full Text] [Related]
15. Expression of Ice-Binding Proteins in Caenorhabditis elegans Improves the Survival Rate upon Cold Shock and during Freezing. Kuramochi M; Takanashi C; Yamauchi A; Doi M; Mio K; Tsuda S; Sasaki YC Sci Rep; 2019 May; 9(1):6246. PubMed ID: 31092839 [TBL] [Abstract][Full Text] [Related]
16. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations. Sun T; Gauthier SY; Campbell RL; Davies PL J Phys Chem B; 2015 Oct; 119(40):12808-15. PubMed ID: 26371748 [TBL] [Abstract][Full Text] [Related]
17. Dynamic motions of ice-binding proteins in living Kuramochi M; Dong Y; Yang Y; Arai T; Okada R; Shinkai Y; Doi M; Aoyama K; Sekiguchi H; Mio K; Tsuda S; Sasaki YC Biochem Biophys Rep; 2022 Mar; 29():101224. PubMed ID: 35146137 [TBL] [Abstract][Full Text] [Related]
19. Structure-based characterization and antifreeze properties of a hyperactive ice-binding protein from the Antarctic bacterium Flavobacterium frigoris PS1. Do H; Kim SJ; Kim HJ; Lee JH Acta Crystallogr D Biol Crystallogr; 2014 Apr; 70(Pt 4):1061-73. PubMed ID: 24699650 [TBL] [Abstract][Full Text] [Related]
20. Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein. Midya US; Bandyopadhyay S J Phys Chem B; 2014 May; 118(18):4743-52. PubMed ID: 24725212 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]