These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 32414217)

  • 21. Recent advances in tailoring and improving the properties of polyimide aerogels and their application.
    Ghaffari-Mosanenzadeh S; Aghababaei Tafreshi O; Karamikamkar S; Saadatnia Z; Rad E; Meysami M; Naguib HE
    Adv Colloid Interface Sci; 2022 Jun; 304():102646. PubMed ID: 35378358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Eco-friendly Flame-Retardant Cellulose Nanofibril Aerogels by Incorporating Sodium Bicarbonate.
    Farooq M; Sipponen MH; Seppälä A; Österberg M
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27407-27415. PubMed ID: 30033716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold.
    Fu J; Wang S; He C; Lu Z; Huang J; Chen Z
    Carbohydr Polym; 2016 Aug; 147():89-96. PubMed ID: 27178912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Closed-Loop Recyclable High-Performance Polyimine Aerogels Derived from Bio-Based Resources.
    Wang C; Eisenreich F; Tomović Ž
    Adv Mater; 2023 Feb; 35(8):e2209003. PubMed ID: 36495005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the physical properties and biocompatibility of polybenzoxazine-based aerogels for use as a novel hard-tissue scaffold.
    Rubenstein DA; Lu H; Mahadik SS; Leventis N; Yin W
    J Biomater Sci Polym Ed; 2012; 23(9):1171-84. PubMed ID: 21619731
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis and biomedical applications of aerogels: Possibilities and challenges.
    Maleki H; Durães L; García-González CA; Del Gaudio P; Portugal A; Mahmoudi M
    Adv Colloid Interface Sci; 2016 Oct; 236():1-27. PubMed ID: 27321857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased Flexibility in Polyimide Aerogels Using Aliphatic Spacers in the Polymer Backbone.
    Pantoja M; Boynton N; Cavicchi KA; Dosa B; Cashman JL; Meador MAB
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9425-9437. PubMed ID: 30793877
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aerogels Derived from Polymer Nanofibers and Their Applications.
    Qian Z; Wang Z; Zhao N; Xu J
    Macromol Rapid Commun; 2018 Jul; 39(14):e1700724. PubMed ID: 29517823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hybrid and Single-Component Flexible Aerogels for Biomedical Applications: A Review.
    Fijalkowski M; Ali A; Qamer S; Coufal R; Adach K; Petrik S
    Gels; 2023 Dec; 10(1):. PubMed ID: 38275842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tailoring mechanical properties of aerogels for aerospace applications.
    Randall JP; Meador MA; Jana SC
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):613-26. PubMed ID: 21361281
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption properties of silica aerogel-based materials.
    Goryunova K; Gahramanli Y; Gurbanova R
    RSC Adv; 2023 Jun; 13(27):18207-18216. PubMed ID: 37333790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biological Thermal Performance of Organic and Inorganic Aerogels as Patches for Photothermal Therapy.
    Ferreira-Gonçalves T; Iglesias-Mejuto A; Linhares T; Coelho JMP; Vieira P; Faísca P; Catarino J; Pinto P; Ferreira D; Ferreira HA; Gaspar MM; Durães L; García-González CA; Reis CP
    Gels; 2022 Aug; 8(8):. PubMed ID: 36005086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly Porous, Rigid-Rod Polyamide Aerogels with Superior Mechanical Properties and Unusually High Thermal Conductivity.
    Williams JC; Nguyen BN; McCorkle L; Scheiman D; Griffin JS; Steiner SA; Meador MA
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1801-1809. PubMed ID: 28060486
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pectin-based nanocomposite aerogels for potential insulated food packaging application.
    Nešić A; Gordić M; Davidović S; Radovanović Ž; Nedeljković J; Smirnova I; Gurikov P
    Carbohydr Polym; 2018 Sep; 195():128-135. PubMed ID: 29804960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review.
    Karamikamkar S; Naguib HE; Park CB
    Adv Colloid Interface Sci; 2020 Feb; 276():102101. PubMed ID: 31978639
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction.
    Ma H; Zheng X; Luo X; Yi Y; Yang F
    Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29385745
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal conductivity/structure correlations in thermal super-insulating pectin aerogels.
    Groult S; Budtova T
    Carbohydr Polym; 2018 Sep; 196():73-81. PubMed ID: 29891326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Noble metal aerogels-synthesis, characterization, and application as electrocatalysts.
    Liu W; Herrmann AK; Bigall NC; Rodriguez P; Wen D; Oezaslan M; Schmidt TJ; Gaponik N; Eychmüller A
    Acc Chem Res; 2015 Feb; 48(2):154-62. PubMed ID: 25611348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative Evaluation of the Hierarchical Porosity in Polyimide Aerogels and Corresponding Solvated Gels.
    Rinehart SJ; Nguyen BN; Viggiano RP; Meador MAB; Dadmun MD
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30457-30465. PubMed ID: 32538072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silicone-Based Organic-Inorganic Hybrid Aerogels and Xerogels.
    Shimizu T; Kanamori K; Nakanishi K
    Chemistry; 2017 Apr; 23(22):5176-5187. PubMed ID: 28105748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.