These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32414235)

  • 1. Freezing of Aqueous Carboxylic Acid Solutions on Ice.
    Moll CJ; Meister K; Versluis J; Bakker HJ
    J Phys Chem B; 2020 Jun; 124(25):5201-5208. PubMed ID: 32414235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bulk Response of Carboxylic Acid Solutions Observed with Surface Sum-Frequency Generation Spectroscopy.
    Moll CJ; Versluis J; Bakker HJ
    J Phys Chem B; 2022 Jan; 126(1):270-277. PubMed ID: 34962792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freezing and glass transitions upon cooling and warming and ice/freeze-concentration-solution morphology of emulsified aqueous citric acid.
    Bogdan A; Molina MJ; Tenhu H
    Eur J Pharm Biopharm; 2016 Dec; 109():49-60. PubMed ID: 27664024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double freezing of (NH(4))(2)SO(4)/H(2)O droplets below the eutectic point and the crystallization of (NH(4))(2)SO(4) to the ferroelectric phase.
    Bogdan A
    J Phys Chem A; 2010 Sep; 114(37):10135-9. PubMed ID: 20735056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscale pH inhomogeneity in frozen NaCl solutions.
    Kataoka S; Harada M; Okada T
    Phys Chem Chem Phys; 2021 Sep; 23(34):18595-18601. PubMed ID: 34612396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of secondary ice in a frozen NaCl freeze-concentrated solution on the extent of methylene blue aggregation.
    Veselý L; Závacká K; Štůsek R; Olbert M; Neděla V; Shalaev E; Heger D
    Int J Pharm; 2024 Jan; 650():123691. PubMed ID: 38072147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization of freezing process in situ upon cooling and warming of aqueous solutions.
    Bogdan A; Molina MJ; Tenhu H; Bertel E; Bogdan N; Loerting T
    Sci Rep; 2014 Dec; 4():7414. PubMed ID: 25491562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Structure of Solutions of Poly(vinyl alcohol) in Water.
    Moll CJ; Meister K; Kirschner J; Bakker HJ
    J Phys Chem B; 2018 Nov; 122(47):10722-10727. PubMed ID: 30372078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterodyne-detected sum frequency generation spectroscopy of polyacrylic acid at the air/water-interface.
    Balzerowski P; Meister K; Versluis J; Bakker HJ
    Phys Chem Chem Phys; 2016 Jan; 18(4):2481-7. PubMed ID: 26698635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Excimeric Fluorescence to Study How the Cooling Rate Determines the Behavior of Naphthalenes in Freeze-Concentrated Solutions: Vitrification and Crystallization.
    Ondrušková G; Veselý L; Zezula J; Bachler J; Loerting T; Heger D
    J Phys Chem B; 2020 Nov; 124(46):10556-10566. PubMed ID: 33156630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization data on the freezing process of micrometer-scaled aqueous citric acid drops.
    Bogdan A; Molina MJ; Tenhu H
    Data Brief; 2017 Feb; 10():144-146. PubMed ID: 27981204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vitrification and increase of basicity in between ice I
    Imrichová K; Veselý L; Gasser TM; Loerting T; Neděla V; Heger D
    J Chem Phys; 2019 Jul; 151(1):014503. PubMed ID: 31272163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative Order of Sulfuric Acid, Bisulfate, Hydronium, and Cations at the Air-Water Interface.
    Hua W; Verreault D; Allen HC
    J Am Chem Soc; 2015 Nov; 137(43):13920-6. PubMed ID: 26456219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical Chemistry of the Freezing Process of Atmospheric Aqueous Drops.
    Bogdan A; Molina MJ
    J Phys Chem A; 2017 Apr; 121(16):3109-3116. PubMed ID: 28393522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different freezing behavior of millimeter- and micrometer-scaled (NH₄)₂SO₄/H₂O droplets.
    Bogdan A; Molina MJ; Tenhu H; Mayer E; Bertel E; Loerting T
    J Phys Condens Matter; 2011 Jan; 23(3):035103. PubMed ID: 21406858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freezing and melting of salt hydrates next to solid surfaces probed by infrared-visible sum frequency generation spectroscopy.
    Anim-Danso E; Zhang Y; Dhinojwala A
    J Am Chem Soc; 2013 Jun; 135(23):8496-9. PubMed ID: 23697668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of water and atmospherically relevant ions and solutes: vibrational sum frequency spectroscopy at the vapor/liquid and liquid/solid interfaces.
    Jubb AM; Hua W; Allen HC
    Acc Chem Res; 2012 Jan; 45(1):110-9. PubMed ID: 22066822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chirality Discriminated by Heterodyne-Detected Vibrational Sum Frequency Generation.
    Okuno M; Ishibashi TA
    J Phys Chem Lett; 2014 Aug; 5(16):2874-8. PubMed ID: 26278092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freeze-drying using vacuum-induced surface freezing.
    Kramer M; Sennhenn B; Lee G
    J Pharm Sci; 2002 Feb; 91(2):433-43. PubMed ID: 11835203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of frozen solutions of glycine.
    Chongprasert S; Knopp SA; Nail SL
    J Pharm Sci; 2001 Nov; 90(11):1720-8. PubMed ID: 11745729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.