These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32414267)

  • 1. A versatile molecular beam apparatus for cold/ultracold collisions.
    Amarasinghe C; Perera CA; Suits AG
    J Chem Phys; 2020 May; 152(18):184201. PubMed ID: 32414267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. State-to-state scattering of highly vibrationally excited NO at broadly tunable energies.
    Amarasinghe C; Li H; Perera CA; Besemer M; Zuo J; Xie C; van der Avoird A; Groenenboom GC; Guo H; Kłos J; Suits AG
    Nat Chem; 2020 Jun; 12(6):528-534. PubMed ID: 32393824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Cross Sections for State-to-State Collisions of NO( v = 10) in Near-Copropagating Beams.
    Amarasinghe C; Li H; Perera CA; Besemer M; van der Avoird A; Groenenboom GC; Xie C; Guo H; Suits AG
    J Phys Chem Lett; 2019 May; 10(10):2422-2427. PubMed ID: 31021645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrabeam Scattering for Ultracold Collisions.
    Amarasinghe C; Suits AG
    J Phys Chem Lett; 2017 Oct; 8(20):5153-5159. PubMed ID: 28976761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential Cross Sections for Cold, State-to-State Spin-Orbit Changing Collisions of NO(
    Perera CA; Zuo J; Guo H; Suits AG
    J Phys Chem A; 2022 Jun; 126(21):3338-3346. PubMed ID: 35605132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereodynamical Control of Cold Collisions of Polyatomic Molecules with Atoms.
    Yang D; Xie D; Guo H
    J Phys Chem Lett; 2022 Feb; 13(7):1777-1784. PubMed ID: 35167302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inelastic collisions of ultracold triplet Rb
    Drews B; Deiß M; Jachymski K; Idziaszek Z; Hecker Denschlag J
    Nat Commun; 2017 Mar; 8():14854. PubMed ID: 28332492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Communication: Importance of rotationally inelastic processes in low-energy Penning ionization of CHF3.
    Jankunas J; Jachymski K; Hapka M; Osterwalder A
    J Chem Phys; 2016 Jun; 144(22):221102. PubMed ID: 27305989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotationally Inelastic Scattering of Quantum-State-Selected ND3 with Ar.
    Tkáč O; Saha AK; Loreau J; Parker DH; van der Avoird A; Orr-Ewing AJ
    J Phys Chem A; 2015 Jun; 119(23):5979-87. PubMed ID: 25532415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy transfer of highly vibrationally excited azulene. III. Collisions between azulene and argon.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2006 Nov; 125(20):204309. PubMed ID: 17144702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing Scattering Resonances in (Ultra)Cold Inelastic NO-He Collisions.
    Onvlee J; Avoird Av; Groenenboom G; van de Meerakker SY
    J Phys Chem A; 2016 Jul; 120(27):4770-7. PubMed ID: 26760050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereodynamic control of cold rotationally inelastic CO + HD collisions.
    Jambrina PG; Croft JFE; Balakrishnan N; Aoiz FJ
    Phys Chem Chem Phys; 2021 Sep; 23(35):19364-19374. PubMed ID: 34524308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereodynamics of rotationally inelastic scattering in cold He + HD collisions.
    Morita M; Balakrishnan N
    J Chem Phys; 2020 Sep; 153(9):091101. PubMed ID: 32891088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Energy Water-Hydrogen Inelastic Collisions.
    Bergeat A; Faure A; Morales SB; Moudens A; Naulin C
    J Phys Chem A; 2020 Jan; 124(2):259-264. PubMed ID: 31283233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of product-pair correlations in rotationally inelastic collisions of ND
    Gao Z; Loreau J; van der Avoird A; van de Meerakker SYT
    Phys Chem Chem Phys; 2019 Jul; 21(26):14033-14041. PubMed ID: 30649107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy transfer of highly vibrationally excited azulene: collisions between azulene and krypton.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2006 Feb; 124(5):054302. PubMed ID: 16468864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Globally Accurate Full-Dimensional Potential Energy Surface for H
    Yao Q; Morita M; Xie C; Balakrishnan N; Guo H
    J Phys Chem A; 2019 Aug; 123(30):6578-6586. PubMed ID: 31268323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing Low-Energy Resonances in Water-Hydrogen Inelastic Collisions.
    Bergeat A; Morales SB; Naulin C; Wiesenfeld L; Faure A
    Phys Rev Lett; 2020 Oct; 125(14):143402. PubMed ID: 33064550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of quantum dynamical resonances in near cold inelastic collisions of astrophysical molecules.
    Costes M; Naulin C
    Chem Sci; 2016 Apr; 7(4):2462-2469. PubMed ID: 28660016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental testing of ab initio potential energy surfaces: Stereodynamics of NO(A
    Luxford TF; Sharples TR; McKendrick KG; Costen ML
    J Chem Phys; 2016 Nov; 145(17):174304. PubMed ID: 27825214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.