These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 32414449)
1. Highly Efficient Preparation of Functional and Thermostable Cellulose Nanocrystals via H Wang H; Xie H; Du H; Wang X; Liu W; Duan Y; Zhang X; Sun L; Zhang X; Si C Carbohydr Polym; 2020 Jul; 239():116233. PubMed ID: 32414449 [TBL] [Abstract][Full Text] [Related]
2. Preparation of thermally stable and surface-functionalized cellulose nanocrystals via mixed H Xie H; Zou Z; Du H; Zhang X; Wang X; Yang X; Wang H; Li G; Li L; Si C Carbohydr Polym; 2019 Nov; 223():115116. PubMed ID: 31427005 [TBL] [Abstract][Full Text] [Related]
3. Sustainable preparation of bifunctional cellulose nanocrystals via mixed H Wang H; Du H; Liu K; Liu H; Xu T; Zhang S; Chen X; Zhang R; Li H; Xie H; Zhang X; Si C Carbohydr Polym; 2021 Aug; 266():118107. PubMed ID: 34044925 [TBL] [Abstract][Full Text] [Related]
4. Cellulose nanocrystals produced using recyclable sulfuric acid as hydrolysis media and their wetting molecular dynamics simulation. Ma T; Hu X; Lu S; Cui R; Zhao J; Hu X; Song Y Int J Biol Macromol; 2021 Aug; 184():405-414. PubMed ID: 34146558 [TBL] [Abstract][Full Text] [Related]
5. Facile and rapid one-step extraction of carboxylated cellulose nanocrystals by H Cheng M; Qin Z; Hu J; Liu Q; Wei T; Li W; Ling Y; Liu B Carbohydr Polym; 2020 Mar; 231():115701. PubMed ID: 31888799 [TBL] [Abstract][Full Text] [Related]
6. Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis. Kusmono ; Listyanda RF; Wildan MW; Ilman MN Heliyon; 2020 Nov; 6(11):e05486. PubMed ID: 33235939 [TBL] [Abstract][Full Text] [Related]
7. Isolation of cellulose nanocrystals from medium density fiberboards. Gu J; Hu C; Zhong R; Tu D; Yun H; Zhang W; Leu SY Carbohydr Polym; 2017 Jul; 167():70-78. PubMed ID: 28433179 [TBL] [Abstract][Full Text] [Related]
8. Physicochemical Characteristics of Cellulose Nanocrystals Derived from the Residue of Filamentous Microalga Tribonema utriculosum. Wang F; Cao Y; Zhu Z; Gao B; Zhang C Appl Biochem Biotechnol; 2021 Aug; 193(8):2430-2442. PubMed ID: 33710521 [TBL] [Abstract][Full Text] [Related]
9. Efficient preparation of cellulose nanocrystals with a high yield through simultaneous acidolysis with a heat-moisture treatment. Zhou L; Huang Y; He X; Qin Y; Dai L; Ji N; Xiong L; Sun Q Food Chem; 2022 Oct; 391():133285. PubMed ID: 35623278 [TBL] [Abstract][Full Text] [Related]
10. A comparative study on the preparation and characterization of cellulose nanocrystals with various polymorphs. Gong J; Mo L; Li J Carbohydr Polym; 2018 Sep; 195():18-28. PubMed ID: 29804966 [TBL] [Abstract][Full Text] [Related]
11. Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose. Tang LR; Huang B; Ou W; Chen XR; Chen YD Bioresour Technol; 2011 Dec; 102(23):10973-7. PubMed ID: 21993330 [TBL] [Abstract][Full Text] [Related]
12. Large-Scale Preparation of Carboxylated Cellulose Nanocrystals and Their Application for Stabilizing Pickering Emulsions. Liu Y; Wei Y; He Y; Qian Y; Wang C; Chen G ACS Omega; 2023 May; 8(17):15114-15123. PubMed ID: 37151532 [TBL] [Abstract][Full Text] [Related]
13. Sustainable preparation of surface functionalized cellulose nanocrystals and their application for Pickering emulsions. Wang H; Zhang M; Hu J; Du H; Xu T; Si C Carbohydr Polym; 2022 Dec; 297():120062. PubMed ID: 36184156 [TBL] [Abstract][Full Text] [Related]
14. Preparation of nanocellulose in high yield via chemi-mechanical synergy. Wang J; Xu J; Zhu S; Wu Q; Li J; Gao Y; Wang B; Li J; Gao W; Zeng J; Chen K Carbohydr Polym; 2021 Jan; 251():117094. PubMed ID: 33142632 [TBL] [Abstract][Full Text] [Related]
15. Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. Kasiri N; Fathi M Int J Biol Macromol; 2018 Jan; 106():1023-1031. PubMed ID: 28842201 [TBL] [Abstract][Full Text] [Related]
16. Unveiling structure and performance of tea-derived cellulose nanocrystals. Wang L; Li Y; Ye L; Zhi C; Zhang T; Miao M Int J Biol Macromol; 2024 Jun; 270(Pt 1):132117. PubMed ID: 38718996 [TBL] [Abstract][Full Text] [Related]
17. Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures. Jia C; Bian H; Gao T; Jiang F; Kierzewski IM; Wang Y; Yao Y; Chen L; Shao Z; Zhu JY; Hu L ACS Appl Mater Interfaces; 2017 Aug; 9(34):28922-28929. PubMed ID: 28766931 [TBL] [Abstract][Full Text] [Related]
18. Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: Effect of acid hydrolysis conditions. Maciel MMÁD; Benini KCCC; Voorwald HJC; Cioffi MOH Int J Biol Macromol; 2019 Apr; 126():496-506. PubMed ID: 30593806 [TBL] [Abstract][Full Text] [Related]
19. Cellulose Nanocrystals (CNCs) from Corn Stalk: Activation Energy Analysis. Huang S; Zhou L; Li MC; Wu Q; Zhou D Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772441 [TBL] [Abstract][Full Text] [Related]
20. Two-response surface design optimization of carboxylated CNCs with super high thermal stability and dye removal capability. Jia B; Chen X; Shen Y; Li Z; Ma X; Yu HY Carbohydr Polym; 2024 Oct; 342():122395. PubMed ID: 39048232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]