BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 32414484)

  • 1. Simulating galactic cosmic ray effects: Synergy modeling of murine tumor prevalence after exposure to two one-ion beams in rapid sequence.
    Huang EG; Wang RY; Xie L; Chang P; Yao G; Zhang B; Ham DW; Lin Y; Blakely EA; Sachs RK
    Life Sci Space Res (Amst); 2020 May; 25():107-118. PubMed ID: 32414484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergy theory for murine Harderian gland tumours after irradiation by mixtures of high-energy ionized atomic nuclei.
    Huang EG; Lin Y; Ebert M; Ham DW; Zhang CY; Sachs RK
    Radiat Environ Biophys; 2019 May; 58(2):151-166. PubMed ID: 30712093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixed Beam Murine Harderian Gland Tumorigenesis: Predicted Dose-Effect Relationships if neither Synergism nor Antagonism Occurs.
    Siranart N; Blakely EA; Cheng A; Handa N; Sachs RK
    Radiat Res; 2016 Dec; 186(6):577-591. PubMed ID: 27874325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergy Theory in Radiobiology.
    Ham DW; Song B; Gao J; Yu J; Sachs RK
    Radiat Res; 2018 Mar; 189(3):225-237. PubMed ID: 29286257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NASA's first ground-based Galactic Cosmic Ray Simulator: Enabling a new era in space radiobiology research.
    Simonsen LC; Slaba TC; Guida P; Rusek A
    PLoS Biol; 2020 May; 18(5):e3000669. PubMed ID: 32428004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative modeling of carcinogenesis induced by single beams or mixtures of space radiations using targeted and non-targeted effects.
    Shuryak I; Sachs RK; Brenner DJ
    Sci Rep; 2021 Dec; 11(1):23467. PubMed ID: 34873209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harderian Gland Tumorigenesis: Low-Dose and LET Response.
    Chang PY; Cucinotta FA; Bjornstad KA; Bakke J; Rosen CJ; Du N; Fairchild DG; Cacao E; Blakely EA
    Radiat Res; 2016 May; 185(5):449-60. PubMed ID: 27092765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluence-related risk coefficients using the Harderian gland data as an example.
    Curtis SB; Townsend LW; Wilson JW; Powers-Risius P; Alpen EL; Fry RJ
    Adv Space Res; 1992; 12(2-3):407-16. PubMed ID: 11537038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluence-based relative biological effectiveness for charged particle carcinogenesis in mouse Harderian gland.
    Alpen EL; Powers-Risius P; Curtis SB; DeGuzman R; Fry RJ
    Adv Space Res; 1994 Oct; 14(10):573-81. PubMed ID: 11539994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initiation-promotion model of tumor prevalence in mice from space radiation exposures.
    Cucinotta FA; Wilson JW
    Radiat Environ Biophys; 1995 Aug; 34(3):145-9. PubMed ID: 7480628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Issues for Simulation of Galactic Cosmic Ray Exposures for Radiobiological Research at Ground-Based Accelerators.
    Kim MH; Rusek A; Cucinotta FA
    Front Oncol; 2015; 5():122. PubMed ID: 26090339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible effects of protracted exposure on the additivity of risks from space radiations.
    Curtis SB
    Adv Space Res; 1996; 18(1-2):41-4. PubMed ID: 11538984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory.
    Norbury JW; Schimmerling W; Slaba TC; Azzam EI; Badavi FF; Baiocco G; Benton E; Bindi V; Blakely EA; Blattnig SR; Boothman DA; Borak TB; Britten RA; Curtis S; Dingfelder M; Durante M; Dynan WS; Eisch AJ; Robin Elgart S; Goodhead DT; Guida PM; Heilbronn LH; Hellweg CE; Huff JL; Kronenberg A; La Tessa C; Lowenstein DI; Miller J; Morita T; Narici L; Nelson GA; Norman RB; Ottolenghi A; Patel ZS; Reitz G; Rusek A; Schreurs AS; Scott-Carnell LA; Semones E; Shay JW; Shurshakov VA; Sihver L; Simonsen LC; Story MD; Turker MS; Uchihori Y; Williams J; Zeitlin CJ
    Life Sci Space Res (Amst); 2016 Feb; 8():38-51. PubMed ID: 26948012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single track effects, Biostack and risk assessment.
    Curtis SB
    Radiat Meas; 1994 Jan; 23(1):5-8. PubMed ID: 11538014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reference field specification and preliminary beam selection strategy for accelerator-based GCR simulation.
    Slaba TC; Blattnig SR; Norbury JW; Rusek A; La Tessa C
    Life Sci Space Res (Amst); 2016 Feb; 8():52-67. PubMed ID: 26948013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Galactic cosmic ray simulation at the NASA space radiation laboratory - Progress, challenges and recommendations on mixed-field effects.
    Huff JL; Poignant F; Rahmanian S; Khan N; Blakely EA; Britten RA; Chang P; Fornace AJ; Hada M; Kronenberg A; Norman RB; Patel ZS; Shay JW; Weil MM; Simonsen LC; Slaba TC
    Life Sci Space Res (Amst); 2023 Feb; 36():90-104. PubMed ID: 36682835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized shielding for space radiation protection.
    Wilson JW; Cucinotta FA; Kim MH; Schimmerling W
    Phys Med; 2001; 17 Suppl 1():67-71. PubMed ID: 11770540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High throughput screen of small molecules as potential countermeasures to galactic cosmic radiation induced cellular dysfunction.
    Weiss M; Nikisher B; Haran H; Tefft K; Adams J; Edwards JG
    Life Sci Space Res (Amst); 2022 Nov; 35():76-87. PubMed ID: 36336373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential impact of bystander effects on radiation risks in a Mars mission.
    Brenner DJ; Elliston CD
    Radiat Res; 2001 Nov; 156(5 Pt 2):612-7. PubMed ID: 11604082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.
    Wang J; Zhang X; Wang P; Wang X; Farris AB; Wang Y
    Life Sci Space Res (Amst); 2016 Jun; 9():48-55. PubMed ID: 27345200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.