These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32415120)

  • 1. Controlled Structure and Growth Mechanism behind Hydrothermal Growth of TiO
    Prathan A; Sanglao J; Wang T; Bhoomanee C; Ruankham P; Gardchareon A; Wongratanaphisan D
    Sci Rep; 2020 May; 10(1):8065. PubMed ID: 32415120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thickness effect of single crystalline TiO2 nanorods for dye-sensitized solar cells.
    Kang SH
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6318-21. PubMed ID: 25936111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vertically aligned ZnO nanorods on hot filament chemical vapor deposition grown graphene oxide thin film substrate: solar energy conversion.
    Ameen S; Akhtar MS; Song M; Shin HS
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4405-12. PubMed ID: 22827848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and crystallization of TiO
    Jaffari GH; Hussain T; Iqbal AM; Abbas Y
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2022 Aug; 78(Pt 4):593-605. PubMed ID: 35975826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation mechanism of rutile TiO2 rods on fluorine doped tin oxide glass.
    Meng X; Shin DW; Yu SM; Park MH; Yang C; Lee JH; Yoo JB
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8839-44. PubMed ID: 25958614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Successful Growth of TiO
    Qaid SMH; Ghaithan HM; Bawazir HS; Bin Ajaj AF; AlHarbi KK; Aldwayyan AS
    Nanomaterials (Basel); 2023 Mar; 13(5):. PubMed ID: 36903806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution-Processed Hybrid Light-Emitting Devices Comprising TiO
    Tsai TY; Yan PR; Yang SH
    Nanoscale Res Lett; 2016 Dec; 11(1):516. PubMed ID: 27882531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of photovoltaic properties of TiO2 electrodes prepared with nanoparticles and nanorods.
    Nam SH; Ju DW; Boo JH
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9406-10. PubMed ID: 25971074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced ethanol sensing properties of WO
    Abdikadyr B; Kiliç A; Alev O; Büyükköse S; Öztürk ZZ
    Turk J Chem; 2021; 45(2):295-306. PubMed ID: 34104045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Properties of Zinc Oxide Nanorods Grown on Al-Doped Zinc Oxide Seed Layer and Their Applications in Dye-Sensitized Solar Cells.
    Kim KH; Utashiro K; Abe Y; Kawamura M
    Materials (Basel); 2014 Mar; 7(4):2522-2533. PubMed ID: 28788581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliable and Low-Power Multilevel Resistive Switching in TiO
    Xiao M; Musselman KP; Duley WW; Zhou YN
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4808-4817. PubMed ID: 28098978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma treatment effect on dye-sensitized solar cell efficiency of hydrothermal-processed TiO2 nanorods.
    Ahn K; Lee HU; Jeong SY; Kim JP; Jin JS; Ahn HS; Kim HS; Cho CR
    J Nanosci Nanotechnol; 2012 Jul; 12(7):6022-5. PubMed ID: 22966701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple step growth of single crystalline rutile nanorods with the assistance of self-assembled monolayer for dye sensitized solar cells.
    Yang M; Neupane S; Wang X; He J; Li W; Pala N
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9809-15. PubMed ID: 24033252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Insights into the Electron-Collection Efficiency Improvement of CdS-Sensitized TiO
    Chen YL; Chen YH; Chen JW; Cao F; Li L; Luo ZM; Leu IC; Pu YC
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8126-8137. PubMed ID: 30726054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermal fabrication of quasi-one-dimensional single-crystalline anatase TiO2 nanostructures on FTO glass and their applications in dye-sensitized solar cells.
    Liao JY; Lei BX; Wang YF; Liu JM; Su CY; Kuang DB
    Chemistry; 2011 Jan; 17(4):1352-7. PubMed ID: 21243703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal Growth of Vertically Aligned ZnO Nanorods Using a Biocomposite Seed Layer of ZnO Nanoparticles.
    Ibupoto ZH; Khun K; Eriksson M; AlSalhi M; Atif M; Ansari A; Willander M
    Materials (Basel); 2013 Aug; 6(8):3584-3597. PubMed ID: 28811454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrothermal growth of TiO2 nanorod arrays and in situ conversion to nanotube arrays for highly efficient quantum dot-sensitized solar cells.
    Huang H; Pan L; Lim CK; Gong H; Guo J; Tse MS; Tan OK
    Small; 2013 Sep; 9(18):3153-60. PubMed ID: 23606243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing Conductive Highly Ordered Zinc Oxide Nanorods by Acetylacetonate-Assisted Growth.
    A Karim SS; Takamura Y; Tue PT; Tung NT; Kazmi J; Dee CF; Yeop Majlis B; Mohamed MA
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32143385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly sensitive hydrazine chemical sensor fabricated by modified electrode of vertically aligned zinc oxide nanorods.
    Ameen S; Akhtar MS; Shin HS
    Talanta; 2012 Oct; 100():377-83. PubMed ID: 23141352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TiO2 nanorods: a facile size- and shape-tunable synthesis and effective improvement of charge collection kinetics for dye-sensitized solar cells.
    Zhang W; Xie Y; Xiong D; Zeng X; Li Z; Wang M; Cheng YB; Chen W; Yan K; Yang S
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9698-704. PubMed ID: 24833257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.