These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32415374)

  • 1. Harvesting and seeding of stochastic populations: analysis and numerical approximation.
    Hening A; Tran KQ
    J Math Biol; 2020 Jul; 81(1):65-112. PubMed ID: 32415374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harvesting of interacting stochastic populations.
    Hening A; Tran KQ; Phan TT; Yin G
    J Math Biol; 2019 Jul; 79(2):533-570. PubMed ID: 31030297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymptotic harvesting of populations in random environments.
    Hening A; Nguyen DH; Ungureanu SC; Wong TK
    J Math Biol; 2019 Jan; 78(1-2):293-329. PubMed ID: 30078160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic population growth in spatially heterogeneous environments: the density-dependent case.
    Hening A; Nguyen DH; Yin G
    J Math Biol; 2018 Feb; 76(3):697-754. PubMed ID: 28674928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of random and seasonal environmental fluctuations on optimal harvesting and stocking.
    Hening A; Tran KQ; Ungureanu SC
    J Math Biol; 2022 Apr; 84(6):41. PubMed ID: 35467160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On time-discretized versions of the stochastic SIS epidemic model: a comparative analysis.
    Gómez-Corral A; López-García M; Rodríguez-Bernal MT
    J Math Biol; 2021 Apr; 82(5):46. PubMed ID: 33813610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Lotka-Volterra competition system with dynamical resources and density-dependent diffusion.
    Wang ZA; Xu J
    J Math Biol; 2021 Jan; 82(1-2):7. PubMed ID: 33491122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of stochastic demography with life history tradeoffs in density-dependent age-structured populations.
    Lande R; Engen S; Sæther BE
    Proc Natl Acad Sci U S A; 2017 Oct; 114(44):11582-11590. PubMed ID: 29078347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistence in Stochastic Lotka-Volterra Food Chains with Intraspecific Competition.
    Hening A; Nguyen DH
    Bull Math Biol; 2018 Oct; 80(10):2527-2560. PubMed ID: 30109461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constrained minimization problems for the reproduction number in meta-population models.
    Poghotanyan G; Feng Z; Glasser JW; Hill AN
    J Math Biol; 2018 Dec; 77(6-7):1795-1831. PubMed ID: 29445854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistence criteria for populations with non-local dispersion.
    Berestycki H; Coville J; Vo HH
    J Math Biol; 2016 Jun; 72(7):1693-745. PubMed ID: 26162491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population Density and Moment-based Approaches to Modeling Domain Calcium-mediated Inactivation of L-type Calcium Channels.
    Wang X; Hardcastle K; Weinberg SH; Smith GD
    Acta Biotheor; 2016 Mar; 64(1):11-32. PubMed ID: 26424585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial ecology, optimal control and game theoretical fishing problems.
    Mazari I; Ruiz-Balet D
    J Math Biol; 2022 Oct; 85(5):55. PubMed ID: 36261626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Populations in environments with a soft carrying capacity are eventually extinct.
    Jagers P; Zuyev S
    J Math Biol; 2020 Sep; 81(3):845-851. PubMed ID: 32816105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response.
    He X; Zheng S
    J Math Biol; 2017 Jul; 75(1):239-257. PubMed ID: 27915430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistence of structured populations in random environments.
    Benaïm M; Schreiber SJ
    Theor Popul Biol; 2009 Aug; 76(1):19-34. PubMed ID: 19358861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forced Traveling Waves in a Reaction-Diffusion Equation with Strong Allee Effect and Shifting Habitat.
    Li B; Otto G
    Bull Math Biol; 2023 Nov; 85(12):121. PubMed ID: 37922015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Best dispersal strategies in spatially heterogeneous environments: optimization of the principal eigenvalue for indefinite fractional Neumann problems.
    Pellacci B; Verzini G
    J Math Biol; 2018 May; 76(6):1357-1386. PubMed ID: 28889217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the establishment of a mutant.
    Baker J; Chigansky P; Jagers P; Klebaner FC
    J Math Biol; 2020 May; 80(6):1733-1757. PubMed ID: 32103329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approximation of epidemic models by diffusion processes and their statistical inference.
    Guy R; Larédo C; Vergu E
    J Math Biol; 2015 Feb; 70(3):621-46. PubMed ID: 24671428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.