BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 32415463)

  • 1. Towards the clinical translation of optogenetic skeletal muscle stimulation.
    Gundelach LA; Hüser MA; Beutner D; Ruther P; Bruegmann T
    Pflugers Arch; 2020 May; 472(5):527-545. PubMed ID: 32415463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spot light on skeletal muscles: optogenetic stimulation to understand and restore skeletal muscle function.
    van Bremen T; Send T; Sasse P; Bruegmann T
    J Muscle Res Cell Motil; 2017 Aug; 38(3-4):331-337. PubMed ID: 28918572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic control of contractile function in skeletal muscle.
    Bruegmann T; van Bremen T; Vogt CC; Send T; Fleischmann BK; Sasse P
    Nat Commun; 2015 Jun; 6():7153. PubMed ID: 26035411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. No light without the dark: Perspectives and hindrances for translation of cardiac optogenetics.
    Richter C; Bruegmann T
    Prog Biophys Mol Biol; 2020 Aug; 154():39-50. PubMed ID: 31515056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards miniaturized closed-loop optogenetic stimulation devices.
    Edward ES; Kouzani AZ; Tye SJ
    J Neural Eng; 2018 Apr; 15(2):021002. PubMed ID: 29363618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic activation of muscle contraction
    Ganji E; Chan CS; Ward CW; Killian ML
    Connect Tissue Res; 2021 Jan; 62(1):15-23. PubMed ID: 32777957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transdermal optogenetic peripheral nerve stimulation.
    Maimon BE; Zorzos AN; Bendell R; Harding A; Fahmi M; Srinivasan S; Calvaresi P; Herr HM
    J Neural Eng; 2017 Jun; 14(3):034002. PubMed ID: 28157088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic and transcriptomic interrogation of enhanced muscle function in the paralyzed mouse whisker pad.
    Vajtay TJ; Bandi A; Upadhyay A; Swerdel MR; Hart RP; Lee CR; Margolis DJ
    J Neurophysiol; 2019 Apr; 121(4):1491-1500. PubMed ID: 30785807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closed-loop optogenetic neuromodulation enables high-fidelity fatigue-resistant muscle control.
    Herrera-Arcos G; Song H; Yeon SH; Ghenand O; Gutierrez-Arango S; Sinha S; Herr H
    Sci Robot; 2024 May; 9(90):eadi8995. PubMed ID: 38776378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of Using Adjunctive Optogenetic Technologies in Cardiomyocyte Phenotyping - from the Single Cell to the Whole Heart.
    Bub G; Daniels MJ
    Curr Pharm Biotechnol; 2020; 21(9):752-764. PubMed ID: 30961485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress of Development of Optogenetic Implantable Neural Probes.
    Zhao H
    Int J Mol Sci; 2017 Aug; 18(8):. PubMed ID: 28800085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Feedback Control and Electrical-Optical Costimulation of Peripheral Nerves.
    Kapur SK; Richner TJ; Brodnick SK; Williams JC; Poore SO
    Plast Reconstr Surg; 2016 Sep; 138(3):451e-460e. PubMed ID: 27556620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic Manipulation of Neuronal Activity to Modulate Behavior in Freely Moving Mice.
    Berg L; Gerdey J; Masseck OA
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33191936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical stimulation for restoration of motor function after spinal cord injury.
    Mallory GW; Grahn PJ; Hachmann JT; Lujan JL; Lee KH
    Mayo Clin Proc; 2015 Feb; 90(2):300-7. PubMed ID: 25659246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myogenic Maturation by Optical-Training in Cultured Skeletal Muscle Cells.
    Asano T; Ishizuka T; Yawo H
    Methods Mol Biol; 2017; 1668():135-145. PubMed ID: 28842907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal muscle hypertrophy and attenuation of cardio-metabolic risk factors (SHARC) using functional electrical stimulation-lower extremity cycling in persons with spinal cord injury: study protocol for a randomized clinical trial.
    Gorgey AS; Khalil RE; Davis JC; Carter W; Gill R; Rivers J; Khan R; Goetz LL; Castillo T; Lavis T; Sima AP; Lesnefsky EJ; Cardozo CC; Adler RA
    Trials; 2019 Aug; 20(1):526. PubMed ID: 31443727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From optogenetic technologies to neuromodulation therapies.
    Williams JC; Denison T
    Sci Transl Med; 2013 Mar; 5(177):177ps6. PubMed ID: 23515076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viral-Mediated Optogenetic Stimulation of Peripheral Motor Nerves in Non-human Primates.
    Williams JJ; Watson AM; Vazquez AL; Schwartz AB
    Front Neurosci; 2019; 13():759. PubMed ID: 31417342
    [No Abstract]   [Full Text] [Related]  

  • 19. Optogenetic Stimulation for Restoring Vision to Patients Suffering From Retinal Degenerative Diseases: Current Strategies and Future Directions.
    Montazeri L; El Zarif N; Trenholm S; Sawan M
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1792-1807. PubMed ID: 31689206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-Time Closed-Loop Functional Electrical Stimulation Control of Muscle Activation with Evoked Electromyography Feedback for Spinal Cord Injured Patients.
    Li Z; Guiraud D; Andreu D; Gelis A; Fattal C; Hayashibe M
    Int J Neural Syst; 2018 Aug; 28(6):1750063. PubMed ID: 29378445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.