These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain. Su X; Chen N; Sun H; Liu Y; Yang X; Wang W; Zhang S; Tan Q; Su J; Gong Q; Yue Q Neuro Oncol; 2020 Mar; 22(3):393-401. PubMed ID: 31563963 [TBL] [Abstract][Full Text] [Related]
3. Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Le TT; Fu W; Moore JH Bioinformatics; 2020 Jan; 36(1):250-256. PubMed ID: 31165141 [TBL] [Abstract][Full Text] [Related]
4. Direct cortical thickness estimation using deep learning-based anatomy segmentation and cortex parcellation. Rebsamen M; Rummel C; Reyes M; Wiest R; McKinley R Hum Brain Mapp; 2020 Dec; 41(17):4804-4814. PubMed ID: 32786059 [TBL] [Abstract][Full Text] [Related]
5. Model selection for metabolomics: predicting diagnosis of coronary artery disease using automated machine learning. Orlenko A; Kofink D; Lyytikäinen LP; Nikus K; Mishra P; Kuukasjärvi P; Karhunen PJ; Kähönen M; Laurikka JO; Lehtimäki T; Asselbergs FW; Moore JH Bioinformatics; 2020 Mar; 36(6):1772-1778. PubMed ID: 31702773 [TBL] [Abstract][Full Text] [Related]
6. Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Tustison NJ; Cook PA; Klein A; Song G; Das SR; Duda JT; Kandel BM; van Strien N; Stone JR; Gee JC; Avants BB Neuroimage; 2014 Oct; 99():166-79. PubMed ID: 24879923 [TBL] [Abstract][Full Text] [Related]
7. Embedding covariate adjustments in tree-based automated machine learning for biomedical big data analyses. Manduchi E; Fu W; Romano JD; Ruberto S; Moore JH BMC Bioinformatics; 2020 Oct; 21(1):430. PubMed ID: 32998684 [TBL] [Abstract][Full Text] [Related]
8. Mitigating site effects in covariance for machine learning in neuroimaging data. Chen AA; Beer JC; Tustison NJ; Cook PA; Shinohara RT; Shou H; Hum Brain Mapp; 2022 Mar; 43(4):1179-1195. PubMed ID: 34904312 [TBL] [Abstract][Full Text] [Related]
9. Automatic machine learning based on native T1 mapping can identify myocardial fibrosis in patients with hypertrophic cardiomyopathy. Peng WL; Zhang TJ; Shi K; Li HX; Li Y; He S; Li C; Xia D; Xia CC; Li ZL Eur Radiol; 2022 Feb; 32(2):1044-1053. PubMed ID: 34477909 [TBL] [Abstract][Full Text] [Related]
10. Inference of social cognition in schizophrenia patients with neurocognitive domains and neurocognitive tests using automated machine learning. Lin E; Lin CH; Lane HY Asian J Psychiatr; 2024 Jan; 91():103866. PubMed ID: 38128351 [TBL] [Abstract][Full Text] [Related]
11. Geometric deep learning on brain shape predicts sex and age. Besson P; Parrish T; Katsaggelos AK; Bandt SK Comput Med Imaging Graph; 2021 Jul; 91():101939. PubMed ID: 34082280 [TBL] [Abstract][Full Text] [Related]
12. Using Machine Learning and Structural Neuroimaging to Detect First Episode Psychosis: Reconsidering the Evidence. Vieira S; Gong QY; Pinaya WHL; Scarpazza C; Tognin S; Crespo-Facorro B; Tordesillas-Gutierrez D; Ortiz-García V; Setien-Suero E; Scheepers FE; Van Haren NEM; Marques TR; Murray RM; David A; Dazzan P; McGuire P; Mechelli A Schizophr Bull; 2020 Jan; 46(1):17-26. PubMed ID: 30809667 [TBL] [Abstract][Full Text] [Related]
13. Comparisons of automated machine learning (AutoML) in predicting whistleblowing of academic dishonesty with demographic and theory of planned behavior. Rahman RA; Masrom S; Mohamad M; Sari EN; Saragih F; Rahman ASA MethodsX; 2023 Dec; 11():102364. PubMed ID: 37744883 [TBL] [Abstract][Full Text] [Related]
14. Hierarchical Rough-to-Fine Model for Infant Age Prediction Based on Cortical Features. Hu D; Wu Z; Lin W; Li G; Shen D IEEE J Biomed Health Inform; 2020 Jan; 24(1):214-225. PubMed ID: 30716056 [TBL] [Abstract][Full Text] [Related]
15. Hyperparameter Tuning and Pipeline Optimization via Grid Search Method and Tree-Based AutoML in Breast Cancer Prediction. Radzi SFM; Karim MKA; Saripan MI; Rahman MAA; Isa INC; Ibahim MJ J Pers Med; 2021 Sep; 11(10):. PubMed ID: 34683118 [TBL] [Abstract][Full Text] [Related]
16. Comparison of Machine Learning Models for Brain Age Prediction Using Six Imaging Modalities on Middle-Aged and Older Adults. Xiong M; Lin L; Jin Y; Kang W; Wu S; Sun S Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050682 [TBL] [Abstract][Full Text] [Related]
17. Automated machine learning to predict the co-occurrence of isocitrate dehydrogenase mutations and O Zhang S; Sun H; Su X; Yang X; Wang W; Wan X; Tan Q; Chen N; Yue Q; Gong Q J Magn Reson Imaging; 2021 Jul; 54(1):197-205. PubMed ID: 33393131 [TBL] [Abstract][Full Text] [Related]
18. Can we predict subject-specific dynamic cortical thickness maps during infancy from birth? Meng Y; Li G; Rekik I; Zhang H; Gao Y; Lin W; Shen D Hum Brain Mapp; 2017 Jun; 38(6):2865-2874. PubMed ID: 28295833 [TBL] [Abstract][Full Text] [Related]
19. Automated analysis of cortical volume loss predicts seizure outcomes after frontal lobectomy. Whiting AC; Morita-Sherman M; Li M; Vegh D; Machado de Campos B; Cendes F; Wang X; Bingaman W; Jehi LE Epilepsia; 2021 May; 62(5):1074-1084. PubMed ID: 33756031 [TBL] [Abstract][Full Text] [Related]
20. Testing the applicability and performance of Auto ML for potential applications in diagnostic neuroradiology. Musigmann M; Akkurt BH; Krähling H; Nacul NG; Remonda L; Sartoretti T; Henssen D; Brokinkel B; Stummer W; Heindel W; Mannil M Sci Rep; 2022 Aug; 12(1):13648. PubMed ID: 35953588 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]