These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 32416132)

  • 1. Mammalian cell culture for production of recombinant proteins: A review of the critical steps in their biomanufacturing.
    O'Flaherty R; Bergin A; Flampouri E; Mota LM; Obaidi I; Quigley A; Xie Y; Butler M
    Biotechnol Adv; 2020 Nov; 43():107552. PubMed ID: 32416132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perfusion mammalian cell culture for recombinant protein manufacturing - A critical review.
    Bielser JM; Wolf M; Souquet J; Broly H; Morbidelli M
    Biotechnol Adv; 2018; 36(4):1328-1340. PubMed ID: 29738813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: History, key components, and optimization strategies.
    Ritacco FV; Wu Y; Khetan A
    Biotechnol Prog; 2018 Nov; 34(6):1407-1426. PubMed ID: 30290072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of Raman Spectroscopy in Biopharmaceutical Manufacturing: A Short Review.
    Buckley K; Ryder AG
    Appl Spectrosc; 2017 Jun; 71(6):1085-1116. PubMed ID: 28534676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycosylation control technologies for recombinant therapeutic proteins.
    Gupta SK; Shukla P
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10457-10468. PubMed ID: 30334089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioreactor productivity and media cost comparison for different intensified cell culture processes.
    Xu S; Gavin J; Jiang R; Chen H
    Biotechnol Prog; 2017 Jul; 33(4):867-878. PubMed ID: 27977910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upstream continuous processing: recent advances in production of biopharmaceuticals and challenges in manufacturing.
    Matanguihan C; Wu P
    Curr Opin Biotechnol; 2022 Dec; 78():102828. PubMed ID: 36332340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Process performance and product quality in an integrated continuous antibody production process.
    Karst DJ; Steinebach F; Soos M; Morbidelli M
    Biotechnol Bioeng; 2017 Feb; 114(2):298-307. PubMed ID: 27497430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality.
    Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A
    J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of cell culture media performance using fluorescence spectroscopy.
    Ryan PW; Li B; Shanahan M; Leister KJ; Ryder AG
    Anal Chem; 2010 Feb; 82(4):1311-7. PubMed ID: 20088547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal and consistent protein glycosylation in mammalian cell culture.
    Hossler P; Khattak SF; Li ZJ
    Glycobiology; 2009 Sep; 19(9):936-49. PubMed ID: 19494347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line: process development and product quality assessment.
    Rajendra Y; Hougland MD; Alam R; Morehead TA; Barnard GC
    Biotechnol Bioeng; 2015 May; 112(5):977-86. PubMed ID: 25502369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recombinant Antibody Production in CHO and NS0 Cells: Differences and Similarities.
    Dhara VG; Naik HM; Majewska NI; Betenbaugh MJ
    BioDrugs; 2018 Dec; 32(6):571-584. PubMed ID: 30499081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fed-Batch CHO Cell Culture for Lab-Scale Antibody Production.
    Fan Y; Ley D; Andersen MR
    Methods Mol Biol; 2018; 1674():147-161. PubMed ID: 28921435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a combinatorial cell engineering approach to overcome apoptotic effects in XBP-1(s) expressing cells.
    Becker E; Florin L; Pfizenmaier K; Kaufmann H
    J Biotechnol; 2010 Apr; 146(4):198-206. PubMed ID: 19958799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolism.
    Ma N; Ellet J; Okediadi C; Hermes P; McCormick E; Casnocha S
    Biotechnol Prog; 2009; 25(5):1353-63. PubMed ID: 19637321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentrated fed-batch cell culture increases manufacturing capacity without additional volumetric capacity.
    Yang WC; Minkler DF; Kshirsagar R; Ryll T; Huang YM
    J Biotechnol; 2016 Jan; 217():1-11. PubMed ID: 26521697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of maltose as energy source in protein-free CHO-K1 culture to improve the production of recombinant monoclonal antibody.
    Leong DSZ; Teo BKH; Tan JGL; Kamari H; Yang YS; Zhang P; Ng SK
    Sci Rep; 2018 Mar; 8(1):4037. PubMed ID: 29511312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of mammalian cell culture conditions on monoclonal antibody charge heterogeneity: an accessory monitoring tool for process development.
    Sissolak B; Lingg N; Sommeregger W; Striedner G; Vorauer-Uhl K
    J Ind Microbiol Biotechnol; 2019 Aug; 46(8):1167-1178. PubMed ID: 31175523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancement in recombinant protein production using a marine oxygen carrier to enhance oxygen transfer in a CHO-S cell line.
    Le Pape F; Bossard M; Dutheil D; Rousselot M; Polard V; Férec C; Leize E; Delépine P; Zal F
    Artif Cells Nanomed Biotechnol; 2015 Jun; 43(3):186-95. PubMed ID: 25961365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.