BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32416292)

  • 1. Fungal α-amylases from three GH13 subfamilies: their sequence-structural features and evolutionary relationships.
    Janíčková Z; Janeček Š
    Int J Biol Macromol; 2020 Sep; 159():763-772. PubMed ID: 32416292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Silico Analysis of Fungal and Chloride-Dependent α-Amylases within the Family GH13 with Identification of Possible Secondary Surface-Binding Sites.
    Janíčková Z; Janeček Š
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introduction of novel thermostable α-amylases from genus Anoxybacillus and proposing to group the Bacillaceae related α-amylases under five individual GH13 subfamilies.
    Cihan AC; Yildiz ED; Sahin E; Mutlu O
    World J Microbiol Biotechnol; 2018 Jun; 34(7):95. PubMed ID: 29904894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new GH13 subfamily represented by the α-amylase from the halophilic archaeon Haloarcula hispanica.
    Janeček Š; Zámocká B
    Extremophiles; 2020 Mar; 24(2):207-217. PubMed ID: 31734852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases.
    Majzlová K; Pukajová Z; Janeček S
    Carbohydr Res; 2013 Feb; 367():48-57. PubMed ID: 23313816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Looking for the ancestry of the heavy-chain subunits of heteromeric amino acid transporters rBAT and 4F2hc within the GH13 alpha-amylase family.
    Gabrisko M; Janecek S
    FEBS J; 2009 Dec; 276(24):7265-78. PubMed ID: 19878315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Subfamily GH13_46 of the α-Amylase Family GH13 Represented by the Cyclomaltodextrinase from
    Mareček F; Janeček Š
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36557873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic and biochemical characterization of a novel cluster of intracellular fungal alpha-amylase enzymes.
    van der Kaaij RM; Janeček Š; van der Maarel MJEC; Dijkhuizen L
    Microbiology (Reading); 2007 Dec; 153(Pt 12):4003-4015. PubMed ID: 18048915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Domain evolution in enzymes of the neopullulanase subfamily.
    Kuchtová A; Janeček Š
    Microbiology (Reading); 2016 Dec; 162(12):2099-2115. PubMed ID: 27902421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The starch-binding domain family CBM41-An in silico analysis of evolutionary relationships.
    Janeček Š; Majzlová K; Svensson B; MacGregor EA
    Proteins; 2017 Aug; 85(8):1480-1492. PubMed ID: 28425599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligo-1,6-glucosidase and neopullulanase enzyme subfamilies from the alpha-amylase family defined by the fifth conserved sequence region.
    Oslancová A; Janecek S
    Cell Mol Life Sci; 2002 Nov; 59(11):1945-59. PubMed ID: 12530525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family.
    Janeček Š; Gabriško M
    Cell Mol Life Sci; 2016 Jul; 73(14):2707-25. PubMed ID: 27154042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases.
    Janeček Š; Svensson B; MacGregor EA
    Cell Mol Life Sci; 2014 Apr; 71(7):1149-70. PubMed ID: 23807207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Horizontal Transfer and Gene Loss Shaped the Evolution of Alpha-Amylases in Bilaterians.
    Desiderato A; Barbeitos M; Gilbert C; Da Lage JL
    G3 (Bethesda); 2020 Feb; 10(2):709-719. PubMed ID: 31810981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenomic relationships between amylolytic enzymes from 85 strains of fungi.
    Chen W; Xie T; Shao Y; Chen F
    PLoS One; 2012; 7(11):e49679. PubMed ID: 23166747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-structural features and evolutionary relationships of family GH57 α-amylases and their putative α-amylase-like homologues.
    Janeček S; Blesák K
    Protein J; 2011 Aug; 30(6):429-35. PubMed ID: 21786160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships.
    Bushley KE; Turgeon BG
    BMC Evol Biol; 2010 Jan; 10():26. PubMed ID: 20100353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins.
    Stam MR; Danchin EG; Rancurel C; Coutinho PM; Henrissat B
    Protein Eng Des Sel; 2006 Dec; 19(12):555-62. PubMed ID: 17085431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two potentially novel amylolytic enzyme specificities in the prokaryotic glycoside hydrolase α-amylase family GH57.
    Blesák K; Janeček Š
    Microbiology (Reading); 2013 Dec; 159(Pt 12):2584-2593. PubMed ID: 24109595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of inhibitory activity of xylanase-α-amylase inhibitor protein (XAIP): binding studies and crystal structure determination of XAIP-II from Scadoxus multiflorus at 1.2 Å resolution.
    Kumar S; Singh N; Mishra B; Dube D; Sinha M; Singh SB; Dey S; Kaur P; Sharma S; Singh TP
    BMC Struct Biol; 2010 Nov; 10():41. PubMed ID: 21092126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.