BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 32416380)

  • 1. Microstructure and thermal characterization of aerogel-graphite polyurethane spray-foam composite for high efficiency thermal energy utilization.
    Wi S; Berardi U; Loreto SD; Kim S
    J Hazard Mater; 2020 Oct; 397():122656. PubMed ID: 32416380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the Insulating Capacity of Polyurethane Foams through Polyurethane Aerogel Inclusion: From Insulation to Superinsulation.
    Merillas B; Villafañe F; Rodríguez-Pérez MÁ
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Efficient Flame Retardant Polyurethane Foam with Alginate/Clay Aerogel Coating.
    Chen HB; Shen P; Chen MJ; Zhao HB; Schiraldi DA
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32557-32564. PubMed ID: 27933853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and Characterization of a High-Strength Polyimide/Thermoplastic Polyurethane Composite Aerogel with Hydrophobicity and Low Thermal Conductivity.
    Nie Y; Yi X; Zhao X; Yu S; Zhang M; Zhang J; Dou G; Wang M
    Langmuir; 2023 Jul; 39(28):9693-9702. PubMed ID: 37409969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of Aerogel-Modified Recycled Polyurethane Nanocomposites.
    Gu X; Zhu S; Liu S; Liu Y
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultralight and Hydrophobic Palygorskite-based Aerogels with Prominent Thermal Insulation and Flame Retardancy.
    Jin H; Zhou X; Xu T; Dai C; Gu Y; Yun S; Hu T; Guan G; Chen J
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11815-11824. PubMed ID: 32092256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density Effect on Flame Retardancy, Thermal Degradation, and Combustibility of Rigid Polyurethane Foam Modified by Expandable Graphite or Ammonium Polyphosphate.
    Yang H; Liu H; Jiang Y; Chen M; Wan C
    Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 30979071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic composite aerogel with thermal insulation and flame retardancy from cellulose nanofibers, calcium alginate and boric acid.
    Zhu J; Wang Y; Zhao X; Li N; Guo X; Zhao L; Yin Y
    Int J Biol Macromol; 2024 May; 267(Pt 1):131450. PubMed ID: 38588838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal Insulation and Flame Retardancy of the Hydroxyapatite Nanorods/Sodium Alginate Composite Aerogel with a Double-Crosslinked Structure.
    Zhu J; Li X; Li D; Jiang C
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45822-45831. PubMed ID: 36166410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Characterization of the Thermal Conductivity and Microstructure of Opacifier-Fiber-Aerogel Composite.
    Zhang H; Zhang C; Ji W; Wang X; Li Y; Tao W
    Molecules; 2018 Aug; 23(9):. PubMed ID: 30200271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure, Thermal Conductivity, and Flame Retardancy of Konjac Glucomannan Based Aerogels.
    Kuang Y; Chen L; Zhai J; Zhao S; Xiao Q; Wu K; Qiao D; Jiang F
    Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33466715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure and Thermal Insulation Property of Silica Composite Aerogel.
    Shang L; Lyu Y; Han W
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30917534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of DOPO-KH550 modified hollow glass microspheres/PVA composite aerogel for thermal insulation and flame retardancy.
    Li M; Zhu Z; Jiao R; Chen Y; Cao X; Sun H; Li J; Li A
    J Colloid Interface Sci; 2024 Jan; 654(Pt A):719-730. PubMed ID: 37866044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the Characteristics of Expandable Graphite on the Morphology, Thermal Properties, Fire Behaviour and Compression Performance of a Rigid Polyurethane Foam.
    Acuña P; Li Z; Santiago-Calvo M; Villafañe F; Rodríguez-Perez MÁ; Wang DY
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressible, Flame-Resistant and Thermally Insulating Fiber-Reinforced Polybenzoxazine Aerogel Composites.
    Xiao Y; Li L; Liu F; Zhang S; Feng J; Jiang Y; Feng J
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32580420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnesium hydroxide coated hollow glass microspheres/chitosan composite aerogels with excellent thermal insulation and flame retardancy.
    Zhu Z; Niu Y; Wang S; Su M; Long Y; Sun H; Liang W; Li A
    J Colloid Interface Sci; 2022 Apr; 612():35-42. PubMed ID: 34974256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Balanced Thermal Insulation, Flame-Retardant and Mechanical Properties of PU Foam Constructed via Cost-Effective EG/APP/SA Ternary Synergistic Modification.
    Li H; Hou L; Liu Y; Yao Z; Liang L; Tian D; Liu C; Xue J; Zhan L; Liu Y; Zhen Z; Niu K
    Polymers (Basel); 2024 Jan; 16(3):. PubMed ID: 38337219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultralight, hydrophobic, monolithic konjac glucomannan-silica composite aerogel with thermal insulation and mechanical properties.
    Zhu J; Hu J; Jiang C; Liu S; Li Y
    Carbohydr Polym; 2019 Mar; 207():246-255. PubMed ID: 30600006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Silica-Aerogel on Mechanical Characteristics of Polyurethane-Based Composites: Thermal Conductivity and Strength.
    Kim JH; Ahn JH; Kim JD; Lee DH; Kim SK; Lee JM
    Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33916354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchically porous SiO
    Li ME; Wang SX; Han LX; Yuan WJ; Cheng JB; Zhang AN; Zhao HB; Wang YZ
    J Hazard Mater; 2019 Aug; 375():61-69. PubMed ID: 31048136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.