BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32416395)

  • 1. A new approach to removing and recovering phosphorus from livestock wastewater using dolomite.
    Yin Z; Chen Q; Zhao C; Fu Y; Li J; Feng Y; Li L
    Chemosphere; 2020 Sep; 255():127005. PubMed ID: 32416395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate recovery from greenhouse wastewater.
    Yi WG; Lo KV
    J Environ Sci Health B; 2003 Jul; 38(4):501-9. PubMed ID: 12856931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process.
    Hutnik N; Kozik A; Mazienczuk A; Piotrowski K; Wierzbowska B; Matynia A
    Water Res; 2013 Jul; 47(11):3635-43. PubMed ID: 23726699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovering phosphorus as struvite from the digested swine wastewater with bittern as a magnesium source.
    Ye ZL; Chen SH; Lu M; Shi JW; Lin LF; Wang SM
    Water Sci Technol; 2011; 64(2):334-40. PubMed ID: 22097004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous removal of nitrogen and phosphorus by magnesium-modified calcium silicate core-shell material in water.
    Si Q; Zhu Q; Xing Z
    Ecotoxicol Environ Saf; 2018 Nov; 163():656-664. PubMed ID: 30098555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced phosphorus removal using acid-treated magnesium slag particles.
    Tang X; Li R; Wu M; Dong L; Wang Z
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3860-3871. PubMed ID: 29178003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery phosphate and ammonium from aqueous solution by the process of electrochemically decomposing dolomite.
    Li X; Zhou X; Yang B; Wen Z
    Chemosphere; 2021 Jan; 262():128357. PubMed ID: 33182098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of pH on precipitate composition during phosphorus recovery as struvite from swine wastewater].
    Bao XD; Ye ZL; Ma JH; Chen SH; Lin LF; Yan YJ
    Huan Jing Ke Xue; 2011 Sep; 32(9):2598-603. PubMed ID: 22165227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macroscopic and microscopic variation in recovered magnesium phosphate materials: implications for phosphorus removal processes and product re-use.
    Massey MS; Ippolito JA; Davis JG; Sheffield RE
    Bioresour Technol; 2010 Feb; 101(3):877-85. PubMed ID: 19793651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of cost-effective magnesium sources for fluidized struvite crystallization.
    Wang J; Ye X; Zhang Z; Ye ZL; Chen S
    J Environ Sci (China); 2018 Aug; 70():144-153. PubMed ID: 30037401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capture and recycling of ammonium by dolomite-aided struvite precipitation and thermolysis.
    Chen L; Zhou CH; Zhang H; Tong DS; Yu WH; Yang HM; Chu MQ
    Chemosphere; 2017 Nov; 187():302-310. PubMed ID: 28858711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: towards enhancing sustainability and economics of struvite crystallization.
    Shaddel S; Grini T; Andreassen JP; Østerhus SW; Ucar S
    Chemosphere; 2020 Oct; 256():126968. PubMed ID: 32428738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater.
    Song Y; Dai Y; Hu Q; Yu X; Qian F
    Chemosphere; 2014 Apr; 101():41-8. PubMed ID: 24296029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Struvite crystallization versus amorphous magnesium and calcium phosphate precipitation during the treatment of a saline industrial wastewater.
    Crutchik D; Garrido JM
    Water Sci Technol; 2011; 64(12):2460-7. PubMed ID: 22170842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of low-concentration phosphorus using a fluidized raw dolomite bed.
    Ayoub GM; Kalinian H
    Water Environ Res; 2006 Apr; 78(4):353-61. PubMed ID: 16749303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcite-seeded crystallization of calcium phosphate for phosphorus recovery.
    Song Y; Weidler PG; Berg U; Nüesch R; Donnert D
    Chemosphere; 2006 Apr; 63(2):236-43. PubMed ID: 16213545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of phosphate, magnesium and calcium from swine wastewater through crystallization enhanced by aeration.
    Suzuki K; Tanaka Y; Osada T; Waki M
    Water Res; 2002 Jul; 36(12):2991-8. PubMed ID: 12171396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wastewater treatment valorisation by simultaneously removing and recovering phosphate and ammonia from municipal effluents using a mechano-thermo activated magnesite technology.
    Mavhungu A; Mbaya R; Masindi V; Foteinis S; Muedi KL; Kortidis I; Chatzisymeon E
    J Environ Manage; 2019 Nov; 250():109493. PubMed ID: 31521924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery and removal of nutrients from swine wastewater by using a novel integrated reactor for struvite decomposition and recycling.
    Huang H; Xiao D; Liu J; Hou L; Ding L
    Sci Rep; 2015 May; 5():10183. PubMed ID: 25960246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions.
    Shih YJ; Abarca RRM; de Luna MDG; Huang YH; Lu MC
    Chemosphere; 2017 Apr; 173():466-473. PubMed ID: 28135681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.