These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 32416404)

  • 61. The effect of six degree of freedom loading sequence on the in-vitro compressive properties of human lumbar spine segments.
    Amin DB; Lawless IM; Sommerfeld D; Stanley RM; Ding B; Costi JJ
    J Biomech; 2016 Oct; 49(14):3407-3414. PubMed ID: 27663622
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Biomechanical investigation on the influence of the regional material degeneration of an intervertebral disc in a lower lumbar spinal unit: A finite element study.
    Masni-Azian ; Tanaka M
    Comput Biol Med; 2018 Jul; 98():26-38. PubMed ID: 29758454
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Preliminary investigations on intradiscal pressures during daily activities: an in vivo study using the merino sheep.
    Reitmaier S; Schmidt H; Ihler R; Kocak T; Graf N; Ignatius A; Wilke HJ
    PLoS One; 2013; 8(7):e69610. PubMed ID: 23894509
    [TBL] [Abstract][Full Text] [Related]  

  • 64. 3D dynamic numerical simulations of intervertebral disc: bending and twisting.
    Etienne M; Deplano V; Boiron O; Tropiano P
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():236-8. PubMed ID: 23923923
    [No Abstract]   [Full Text] [Related]  

  • 65. Torsion-induced pressure distribution changes in human intervertebral discs: an in vitro study.
    Yantzer BK; Freeman TB; Lee WE; Nichols T; Inamasu J; Guiot B; Johnson WM
    Spine (Phila Pa 1976); 2007 Apr; 32(8):881-4. PubMed ID: 17426632
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Lumbar intervertebral disc herniation following experimental intradiscal pressure increase.
    Iencean SM
    Acta Neurochir (Wien); 2000; 142(6):669-76. PubMed ID: 10949442
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mechanical response of the lumbar intervertebral joint under physiological (complex) loading.
    Lin HS; Liu YK; Adams KH
    J Bone Joint Surg Am; 1978 Jan; 60(1):41-55. PubMed ID: 624758
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A fresh look at the nucleus-endplate region: new evidence for significant structural integration.
    Wade KR; Robertson PA; Broom ND
    Eur Spine J; 2011 Aug; 20(8):1225-32. PubMed ID: 21327814
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mechanical properties of human lumbar spine motion segments. Influence of age, sex, disc level, and degeneration.
    Nachemson AL; Schultz AB; Berkson MH
    Spine (Phila Pa 1976); 1979; 4(1):1-8. PubMed ID: 432710
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Frozen storage affects the compressive creep behavior of the porcine intervertebral disc.
    Bass EC; Duncan NA; Hariharan JS; Dusick J; Bueff HU; Lotz JC
    Spine (Phila Pa 1976); 1997 Dec; 22(24):2867-76. PubMed ID: 9431622
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Spatially resolved streaming potentials of human intervertebral disk motion segments under dynamic axial compression.
    Iatridis JC; Furukawa M; Stokes IA; Gardner-Morse MG; Laible JP
    J Biomech Eng; 2009 Mar; 131(3):031006. PubMed ID: 19154065
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Biomechanical analysis of C4-C6 spine segment considering anisotropy of annulus fibrosus.
    Wang Y; Peng X; Guo Z
    Biomed Tech (Berl); 2013 Aug; 58(4):343-51. PubMed ID: 23924518
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Role of load history in intervertebral disc mechanics and intradiscal pressure generation.
    Hwang D; Gabai AS; Yu M; Yew AG; Hsieh AH
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):95-106. PubMed ID: 21380846
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Flow-related mechanics of the intervertebral disc: the validity of an in vitro model.
    van der Veen AJ; Mullender M; Smit TH; Kingma I; van Dieën JH
    Spine (Phila Pa 1976); 2005 Sep; 30(18):E534-9. PubMed ID: 16166881
    [TBL] [Abstract][Full Text] [Related]  

  • 75. In vitro torsion-induced stress distribution changes in porcine intervertebral discs.
    van Deursen DL; Snijders CJ; Kingma I; van Dieën JH
    Spine (Phila Pa 1976); 2001 Dec; 26(23):2582-6. PubMed ID: 11725239
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading.
    Schmidt H; Kettler A; Heuer F; Simon U; Claes L; Wilke HJ
    Spine (Phila Pa 1976); 2007 Apr; 32(7):748-55. PubMed ID: 17414908
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Sustained loading generates stress concentrations in lumbar intervertebral discs.
    Adams MA; McMillan DW; Green TP; Dolan P
    Spine (Phila Pa 1976); 1996 Feb; 21(4):434-8. PubMed ID: 8658246
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nonlinear gross response analysis of a lumbar motion segment in combined sagittal loadings.
    Shirazi-Adl A; Drouin G
    J Biomech Eng; 1988 Aug; 110(3):216-22. PubMed ID: 3172742
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A biomimetic artificial intervertebral disc system composed of a cubic three-dimensional fabric.
    Shikinami Y; Kawabe Y; Yasukawa K; Tsuta K; Kotani Y; Abumi K
    Spine J; 2010 Feb; 10(2):141-52. PubMed ID: 19944651
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Posteriorly directed shear loads and disc degeneration affect the torsional stiffness of spinal motion segments: a biomechanical modeling study.
    Homminga J; Lehr AM; Meijer GJ; Janssen MM; Schlösser TP; Verkerke GJ; Castelein RM
    Spine (Phila Pa 1976); 2013 Oct; 38(21):E1313-9. PubMed ID: 23797503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.