These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 32416494)
1. Cooking oil-surfactant emulsion in water for harvesting Chlorella vulgaris by sedimentation or flotation. Potocar T; Leite LS; Daniel LA; Pivokonsky M; Matoulkova D; Branyik T Bioresour Technol; 2020 Sep; 311():123508. PubMed ID: 32416494 [TBL] [Abstract][Full Text] [Related]
2. Buoy-bead flotation harvesting of the microalgae Chlorella vulgaris using surface-layered polymeric microspheres: A novel approach. Xu K; Zou X; Wen H; Xue Y; Zhao S; Li Y Bioresour Technol; 2018 Nov; 267():341-346. PubMed ID: 30029180 [TBL] [Abstract][Full Text] [Related]
3. Gemini surfactant: A novel flotation collector for harvesting of microalgae by froth flotation. Huang Z; Cheng C; Liu Z; Luo W; Zhong H; He G; Liang C; Li L; Deng L; Fu W Bioresour Technol; 2019 Mar; 275():421-424. PubMed ID: 30611623 [TBL] [Abstract][Full Text] [Related]
4. A rapid, efficient and eco-friendly approach for simultaneous biomass harvesting and bioproducts extraction from microalgae: Dual flocculation between cationic surfactants and bio-polymer. Taghavijeloudar M; Yaqoubnejad P; Ahangar AK; Rezania S Sci Total Environ; 2023 Jan; 854():158717. PubMed ID: 36108873 [TBL] [Abstract][Full Text] [Related]
5. Effective harvesting of the microalgae Chlorella vulgaris via flocculation-flotation with bioflocculant. Lei X; Chen Y; Shao Z; Chen Z; Li Y; Zhu H; Zhang J; Zheng W; Zheng T Bioresour Technol; 2015 Dec; 198():922-5. PubMed ID: 26391967 [TBL] [Abstract][Full Text] [Related]
6. A novel approach for harvesting the microalgae Chlorella vulgaris with sodium alginate microspheres using buoy-bead flotation method. Zhang H; Wen H; Yin H; Qin W; Liu X; Wang Y; Liu Y Sci Total Environ; 2022 Dec; 851(Pt 2):158418. PubMed ID: 36055496 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of Chlorella vulgaris harvesting via the electro-coagulation-flotation (ECF) method. Wong YK; Ho YH; Leung HM; Ho KC; Yau YH; Yung KK Environ Sci Pollut Res Int; 2017 Apr; 24(10):9102-9110. PubMed ID: 28039627 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous harvesting and extracellular polymeric substances extrusion of microalgae using surfactant: Promoting surfactant-assisted flocculation through pH adjustment. Taghavijeloudar M; Kebria DY; Yaqoubnejad P Bioresour Technol; 2021 Jan; 319():124224. PubMed ID: 33254453 [TBL] [Abstract][Full Text] [Related]
9. Microwave assisted flocculation for harvesting of Chlorella vulgaris. Liu W; Cui Y; Cheng P; Huo S; Ma X; Chen Q; Cobb K; Chen P; Ma J; Gao X; Ruan R Bioresour Technol; 2020 Oct; 314():123770. PubMed ID: 32652448 [TBL] [Abstract][Full Text] [Related]
10. Efficient microalgae harvesting using a thermal flotation method with response surface methodology. Zou X; Xu K; Wen H; Xue Y; Qu Y; Li Y Water Sci Technol; 2019 Aug; 80(3):426-436. PubMed ID: 31596254 [TBL] [Abstract][Full Text] [Related]
11. Effective harvesting of microalgae: Comparison of different polymeric flocculants. Gerchman Y; Vasker B; Tavasi M; Mishael Y; Kinel-Tahan Y; Yehoshua Y Bioresour Technol; 2017 Mar; 228():141-146. PubMed ID: 28061396 [TBL] [Abstract][Full Text] [Related]
12. Buoy-bead flotation application for the harvesting of microalgae and mechanistic analysis of significant factors. Wen H; Zou X; Xu K; Shen Z; Ren X; Li Y Bioprocess Biosyst Eng; 2019 Mar; 42(3):391-400. PubMed ID: 30460400 [TBL] [Abstract][Full Text] [Related]
13. Investigation on the role of surfactants in bubble-algae interaction in flotation harvesting of Chlorella vulgaris. Shen Z; Li Y; Wen H; Ren X; Liu J; Yang L Sci Rep; 2018 Feb; 8(1):3303. PubMed ID: 29459703 [TBL] [Abstract][Full Text] [Related]
14. Flocculation of Chlorella vulgaris with alum and pH adjustment. Mohseni F; Moosavi Zenooz A Biotechnol Appl Biochem; 2022 Jun; 69(3):1112-1120. PubMed ID: 34036645 [TBL] [Abstract][Full Text] [Related]
15. A continuous flocculants-free electrolytic flotation system for microalgae harvesting. Luo S; Griffith R; Li W; Peng P; Cheng Y; Chen P; Addy MM; Liu Y; Ruan R Bioresour Technol; 2017 Aug; 238():439-449. PubMed ID: 28460364 [TBL] [Abstract][Full Text] [Related]
17. Synergy of flocculation and flotation for microalgae harvesting using aluminium electrolysis. Shi W; Zhu L; Chen Q; Lu J; Pan G; Hu L; Yi Q Bioresour Technol; 2017 Jun; 233():127-133. PubMed ID: 28260663 [TBL] [Abstract][Full Text] [Related]
18. Efficient harvesting of marine Chlorella vulgaris microalgae utilizing cationic starch nanoparticles by response surface methodology. Bayat Tork M; Khalilzadeh R; Kouchakzadeh H Bioresour Technol; 2017 Nov; 243():583-588. PubMed ID: 28704739 [TBL] [Abstract][Full Text] [Related]
19. First evidence of bioflocculant from Shinella albus with flocculation activity on harvesting of Chlorella vulgaris biomass. Li Y; Xu Y; Liu L; Jiang X; Zhang K; Zheng T; Wang H Bioresour Technol; 2016 Oct; 218():807-15. PubMed ID: 27423548 [TBL] [Abstract][Full Text] [Related]
20. Continuous electrocoagulation of Chlorella vulgaris in a novel channel-flow reactor: A pilot-scale harvesting study. Lucakova S; Branyikova I; Kovacikova S; Masojidek J; Ranglova K; Branyik T; Ruzicka MC Bioresour Technol; 2022 May; 351():126996. PubMed ID: 35292383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]