These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32416511)

  • 21. The strategy for developing wood pellets as sustainable renewable energy in Indonesia.
    Rimantho D; Hidayah NY; Pratomo VA; Saputra A; Akbar I; Sundari AS
    Heliyon; 2023 Mar; 9(3):e14217. PubMed ID: 36938449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental effects of shifts in a regional heating mix through variations in the utilization of solid biofuels.
    Wolf C; Klein D; Richter K; Weber-Blaschke G
    J Environ Manage; 2016 Jul; 177():177-91. PubMed ID: 27100330
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental impacts of various biomass supply chains for the provision of raw wood in Bavaria, Germany, with focus on climate change.
    Klein D; Wolf C; Schulz C; Weber-Blaschke G
    Sci Total Environ; 2016 Jan; 539():45-60. PubMed ID: 26352646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective.
    Evangelisti S; Tagliaferri C; Clift R; Lettieri P; Taylor R; Chapman C
    Waste Manag; 2015 Sep; 43():485-96. PubMed ID: 26116008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Forest operations in coppice: Environmental assessment of two different logging methods.
    Laschi A; Marchi E; González-García S
    Sci Total Environ; 2016 Aug; 562():493-503. PubMed ID: 27107648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impacts of wood species and moisture content on emissions from residential wood heaters.
    Morin B; Allen G; Marin A; Rector L; Ahmadi M
    J Air Waste Manag Assoc; 2022 Jul; 72(7):647-661. PubMed ID: 35775658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical methods in the development of eco-efficient wood-based pellet production and technology.
    Kuokkanen M; Kuokkanen T; Stoor T; Niinimäki J; Pohjonen V
    Waste Manag Res; 2009 Sep; 27(6):561-71. PubMed ID: 19470536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NIR techniques create added values for the pellet and biofuel industry.
    Lestander TA; Johnsson B; Grothage M
    Bioresour Technol; 2009 Feb; 100(4):1589-94. PubMed ID: 18952415
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pellet-Fed Gasifier Stoves Approach Gas-Stove Like Performance during in-Home Use in Rwanda.
    Champion WM; Grieshop AP
    Environ Sci Technol; 2019 Jun; 53(11):6570-6579. PubMed ID: 31037940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potential for pellet manufacturing with wood waste from construction in Costa Rica.
    Rivera-Tenorio M; Moya R
    Waste Manag Res; 2020 Aug; 38(8):886-895. PubMed ID: 31868136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Occupational exposure of aldehydes resulting from the storage of wood pellets.
    Rahman MA; Rossner A; Hopke PK
    J Occup Environ Hyg; 2017 Jun; 14(6):417-426. PubMed ID: 28475439
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emissions from in-use residential wood pellet boilers and potential emissions savings using thermal storage.
    Wang K; Nakao S; Thimmaiah D; Hopke PK
    Sci Total Environ; 2019 Aug; 676():564-576. PubMed ID: 31055206
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A cost-benefit analysis of a pellet boiler with electrostatic precipitator versus conventional biomass technology: A case study of an institutional boiler in Syracuse, New York.
    Levy JI; Biton L; Hopke PK; Zhang KM; Rector L
    Environ Res; 2017 Jul; 156():312-319. PubMed ID: 28388517
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Applying life cycle assessment to assess the environmental performance of decentralised versus centralised wastewater systems.
    Risch E; Boutin C; Roux P
    Water Res; 2021 May; 196():116991. PubMed ID: 33735623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon Monoxide Off-Gassing From Bags of Wood Pellets.
    Rahman MA; Rossner A; Hopke PK
    Ann Work Expo Health; 2018 Feb; 62(2):248-252. PubMed ID: 29293887
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].
    Shi XQ; Sun ZX; Li XN; Li JX; Yang JX
    Huan Jing Ke Xue; 2015 Mar; 36(3):1105-16. PubMed ID: 25929083
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Life cycle environmental impacts of biogas production and utilisation substituting for grid electricity, natural gas grid and transport fuels.
    Natividad Pérez-Camacho M; Curry R; Cromie T
    Waste Manag; 2019 Jul; 95():90-101. PubMed ID: 31351658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon footprint as an environmental sustainability indicator for the particleboard produced in Pakistan.
    Hussain M; Naseem Malik R; Taylor A
    Environ Res; 2017 May; 155():385-393. PubMed ID: 28288441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ignition sensitivity of different compositional wood pellets and particle size dependence.
    Saeed MA; Farooq M; Andrews GE; Phylaktou HN; Gibbs BM
    J Environ Manage; 2019 Feb; 232():789-795. PubMed ID: 30529866
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical and Combustion Properties of Agglomerates of Wood of Popular Eastern European Species.
    Molenda M; Horabik J; Parafiniuk P; Oniszczuk A; Bańda M; Wajs J; Gondek E; Chutkowski M; Lisowski A; Wiącek J; Stasiak M
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34064230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.