These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 32416519)
1. High-Potential surface on zirconia ceramics for bacteriostasis and biocompatibility. Liu K; Wang G; Guo S; Liu J; Qu W; Liu N; Wang H; Ji J; Chu PK; Gu B; Zhang W Colloids Surf B Biointerfaces; 2020 Sep; 193():111074. PubMed ID: 32416519 [TBL] [Abstract][Full Text] [Related]
2. 3D printed zirconia ceramic hip joint with precise structure and broad-spectrum antibacterial properties. Zhu Y; Liu K; Deng J; Ye J; Ai F; Ouyang H; Wu T; Jia J; Cheng X; Wang X Int J Nanomedicine; 2019; 14():5977-5987. PubMed ID: 31534332 [No Abstract] [Full Text] [Related]
3. Tailoring zirconia surface topography via femtosecond laser-induced nanoscale features: effects on osteoblast cells and antibacterial properties. Ghalandarzadeh A; Ganjali M; Hosseini M Biomed Mater; 2024 Jul; 19(5):. PubMed ID: 39016135 [TBL] [Abstract][Full Text] [Related]
4. Antibacterial effects of a bioactive glass paste on oral microorganisms. Stoor P; Söderling E; Salonen JI Acta Odontol Scand; 1998 Jun; 56(3):161-5. PubMed ID: 9688225 [TBL] [Abstract][Full Text] [Related]
5. In situ plasma fabrication of ceramic-like structure on polymeric implant with enhanced surface hardness, cytocompatibility and antibacterial capability. Liu J; Zhang W; Shi H; Yang K; Wang G; Wang P; Ji J; Chu PK J Biomed Mater Res A; 2016 May; 104(5):1102-12. PubMed ID: 26825052 [TBL] [Abstract][Full Text] [Related]
6. Selective etching of injection molded zirconia-toughened alumina: Towards osseointegrated and antibacterial ceramic implants. Flamant Q; Caravaca C; Meille S; Gremillard L; Chevalier J; Biotteau-Deheuvels K; Kuntz M; Chandrawati R; Herrmann IK; Spicer CD; Stevens MM; Anglada M Acta Biomater; 2016 Dec; 46():308-322. PubMed ID: 27639312 [TBL] [Abstract][Full Text] [Related]
7. Antibacterial activity of hinokitiol against both antibiotic-resistant and -susceptible pathogenic bacteria that predominate in the oral cavity and upper airways. Domon H; Hiyoshi T; Maekawa T; Yonezawa D; Tamura H; Kawabata S; Yanagihara K; Kimura O; Kunitomo E; Terao Y Microbiol Immunol; 2019 Jun; 63(6):213-222. PubMed ID: 31106894 [TBL] [Abstract][Full Text] [Related]
8. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Mei S; Wang H; Wang W; Tong L; Pan H; Ruan C; Ma Q; Liu M; Yang H; Zhang L; Cheng Y; Zhang Y; Zhao L; Chu PK Biomaterials; 2014 May; 35(14):4255-65. PubMed ID: 24565524 [TBL] [Abstract][Full Text] [Related]
9. The evaluation of prepared microstructure pattern by carbon-dioxide laser on zirconia-based ceramics for dental implant application: an in vitro study. Ghalandarzadeh A; Javadpour J; Majidian H; Ganjali M Odontology; 2023 Jul; 111(3):580-599. PubMed ID: 36547737 [TBL] [Abstract][Full Text] [Related]
10. Antibacterial Activity and Fibroblast Cell Viability of Zirconia Coated with Glass Ceramic Containing Ag and NaF Nanoparticles. Oh GJ; Kim JW; Ji MK; Yim EK; Vu VT; Kang BM; Park SW; Yang HS; Moon BK; Lee KK; Ban JS J Nanosci Nanotechnol; 2019 Feb; 19(2):1035-1037. PubMed ID: 30360195 [TBL] [Abstract][Full Text] [Related]
11. Influence of surface modifications to titanium on antibacterial activity in vitro. Yoshinari M; Oda Y; Kato T; Okuda K Biomaterials; 2001 Jul; 22(14):2043-8. PubMed ID: 11426884 [TBL] [Abstract][Full Text] [Related]
13. The antibacterial effect of potassium-sodium niobate ceramics based on controlling piezoelectric properties. Yao T; Chen J; Wang Z; Zhai J; Li Y; Xing J; Hu S; Tan G; Qi S; Chang Y; Yu P; Ning C Colloids Surf B Biointerfaces; 2019 Mar; 175():463-468. PubMed ID: 30572154 [TBL] [Abstract][Full Text] [Related]
14. Reliability and properties of ground Y-TZP-zirconia ceramics. Luthardt RG; Holzhüter M; Sandkuhl O; Herold V; Schnapp JD; Kuhlisch E; Walter M J Dent Res; 2002 Jul; 81(7):487-91. PubMed ID: 12161462 [TBL] [Abstract][Full Text] [Related]
15. In vitro adherence of oral streptococci to zirconia core and veneering glass-ceramics. Rosentritt M; Behr M; Bürgers R; Feilzer AJ; Hahnel S J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):257-63. PubMed ID: 19388092 [TBL] [Abstract][Full Text] [Related]
16. Facile and Versatile Surface Functional Polyetheretherketone with Enhanced Bacteriostasis and Osseointegrative Capability for Implant Application. Li N; Bai J; Wang W; Liang X; Zhang W; Li W; Lu L; Xiao L; Xu Y; Wang Z; Zhu C; Zhou J; Geng D ACS Appl Mater Interfaces; 2021 Dec; 13(50):59731-59746. PubMed ID: 34886671 [TBL] [Abstract][Full Text] [Related]
17. Biomimetic in situ precipitation of calcium phosphate containing silver nanoparticles on zirconia ceramic materials for surface functionalization in terms of antimicrobial and osteoconductive properties. Goldschmidt GM; Krok-Borkowicz M; Zybała R; Pamuła E; Telle R; Conrads G; Schickle K Dent Mater; 2021 Jan; 37(1):10-18. PubMed ID: 33248807 [TBL] [Abstract][Full Text] [Related]
18. Study on antibacterial effect of 45S5 Bioglass. Hu S; Chang J; Liu M; Ning C J Mater Sci Mater Med; 2009 Jan; 20(1):281-6. PubMed ID: 18763024 [TBL] [Abstract][Full Text] [Related]
19. Tissue compatibility and stability of a new zirconia ceramic in vivo. Ichikawa Y; Akagawa Y; Nikai H; Tsuru H J Prosthet Dent; 1992 Aug; 68(2):322-6. PubMed ID: 1501183 [TBL] [Abstract][Full Text] [Related]
20. In vitro and in vivo biocompatibility of graded hydroxyapatite-zirconia composite bioceramic. Quan R; Yang D; Wu X; Wang H; Miao X; Li W J Mater Sci Mater Med; 2008 Jan; 19(1):183-7. PubMed ID: 17597371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]