These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32416918)

  • 21. Synthetic Biological Approaches for Optogenetics and Tools for Transcriptional Light-Control in Bacteria.
    Baumschlager A; Khammash M
    Adv Biol (Weinh); 2021 May; 5(5):e2000256. PubMed ID: 34028214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optogenetic Control of RhoA to Probe Subcellular Mechanochemical Circuitry.
    Cavanaugh KE; Oakes PW; Gardel ML
    Curr Protoc Cell Biol; 2020 Mar; 86(1):e102. PubMed ID: 32031760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light-induced protein proximity by activation of gibberellic acid derivatives in living cells.
    Ziegler MJ; Wombacher R
    Methods Enzymol; 2020; 638():259-271. PubMed ID: 32416916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photo-SNAP-tag, a Light-Regulated Chemical Labeling System.
    Cleveland JD; Tucker CL
    ACS Chem Biol; 2020 Aug; 15(8):2212-2220. PubMed ID: 32623878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reversible Control of Protein Localization in Living Cells Using a Photocaged-Photocleavable Chemical Dimerizer.
    Aonbangkhen C; Zhang H; Wu DZ; Lampson MA; Chenoweth DM
    J Am Chem Soc; 2018 Sep; 140(38):11926-11930. PubMed ID: 30196699
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Dual Characteristics of Light-Induced Cryptochrome 2, Homo-oligomerization and Heterodimerization, for Optogenetic Manipulation in Mammalian Cells.
    Che DL; Duan L; Zhang K; Cui B
    ACS Synth Biol; 2015 Oct; 4(10):1124-35. PubMed ID: 25985220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A fluorogenic chemically induced dimerization technology for controlling, imaging and sensing protein proximity.
    Bottone S; Joliot O; Cakil ZV; El Hajji L; Rakotoarison LM; Boncompain G; Perez F; Gautier A
    Nat Methods; 2023 Oct; 20(10):1553-1562. PubMed ID: 37640938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Localized light-induced protein dimerization in living cells using a photocaged dimerizer.
    Ballister ER; Aonbangkhen C; Mayo AM; Lampson MA; Chenoweth DM
    Nat Commun; 2014 Nov; 5():5475. PubMed ID: 25400104
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optogenetic switches for light-controlled gene expression in yeast.
    Salinas F; Rojas V; Delgado V; Agosin E; Larrondo LF
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2629-2640. PubMed ID: 28210796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optogenetic control of organelle transport using a photocaged chemical inducer of dimerization.
    Ballister ER; Ayloo S; Chenoweth DM; Lampson MA; Holzbaur ELF
    Curr Biol; 2015 May; 25(10):R407-R408. PubMed ID: 25989077
    [No Abstract]   [Full Text] [Related]  

  • 31. Regulation of signaling proteins in the brain by light.
    Lamprecht R
    Prog Neurobiol; 2019 Sep; 180():101638. PubMed ID: 31199959
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optogenetic Manipulation of Mouse Oocytes.
    Akera T; Chenoweth DM; Lampson MA
    Methods Mol Biol; 2018; 1818():129-135. PubMed ID: 29961261
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemically induced dimerization: reversible and spatiotemporal control of protein function in cells.
    Voß S; Klewer L; Wu YW
    Curr Opin Chem Biol; 2015 Oct; 28():194-201. PubMed ID: 26431673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optogenetic Protein Cleavage in Zebrafish Embryos.
    Brown W; Albright S; Tsang M; Deiters A
    Chembiochem; 2022 Dec; 23(23):e202200297. PubMed ID: 36196665
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances in optogenetic regulation of gene expression in mammalian cells using cryptochrome 2 (CRY2).
    Hernández-Candia CN; Wysoczynski CL; Tucker CL
    Methods; 2019 Jul; 164-165():81-90. PubMed ID: 30905749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bidirectional approaches for optogenetic regulation of gene expression in mammalian cells using Arabidopsis cryptochrome 2.
    Pathak GP; Spiltoir JI; Höglund C; Polstein LR; Heine-Koskinen S; Gersbach CA; Rossi J; Tucker CL
    Nucleic Acids Res; 2017 Nov; 45(20):e167. PubMed ID: 28431041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools.
    Shcherbakova DM; Shemetov AA; Kaberniuk AA; Verkhusha VV
    Annu Rev Biochem; 2015; 84():519-50. PubMed ID: 25706899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optogenetic perturbation of the biochemical pathways that control cell behavior.
    Haar LL; Lawrence DS; Hughes RM
    Methods Enzymol; 2019; 622():309-328. PubMed ID: 31155059
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoactivatable Cre recombinase 3.0 for in vivo mouse applications.
    Morikawa K; Furuhashi K; de Sena-Tomas C; Garcia-Garcia AL; Bekdash R; Klein AD; Gallerani N; Yamamoto HE; Park SE; Collins GS; Kawano F; Sato M; Lin CS; Targoff KL; Au E; Salling MC; Yazawa M
    Nat Commun; 2020 May; 11(1):2141. PubMed ID: 32358538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.