BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32417055)

  • 1. Three-dimensional printing in congenital cardiac surgery-Now and the future.
    Van Arsdell GS; Hussein N; Yoo SJ
    J Thorac Cardiovasc Surg; 2020 Aug; 160(2):515-519. PubMed ID: 32417055
    [No Abstract]   [Full Text] [Related]  

  • 2. Patient-Specific Modeling for Structural Heart Intervention: Role of 3D Printing Today and Tomorrow
    Vukicevic M; Filippini S; Little SH
    Methodist Debakey Cardiovasc J; 2020; 16(2):130-137. PubMed ID: 32670473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printing in Complex Congenital Heart Disease: Across a Spectrum of Age, Pathology, and Imaging Techniques.
    Anwar S; Singh GK; Varughese J; Nguyen H; Billadello JJ; Sheybani EF; Woodard PK; Manning P; Eghtesady P
    JACC Cardiovasc Imaging; 2017 Aug; 10(8):953-956. PubMed ID: 27450874
    [No Abstract]   [Full Text] [Related]  

  • 4. Cardiac 3D printing for better understanding of congenital heart disease.
    Hadeed K; Acar P; Dulac Y; Cuttone F; Alacoque X; Karsenty C
    Arch Cardiovasc Dis; 2018 Jan; 111(1):1-4. PubMed ID: 29158165
    [No Abstract]   [Full Text] [Related]  

  • 5. Trends in Congenital Heart Disease: The Next Decade.
    Triedman JK; Newburger JW
    Circulation; 2016 Jun; 133(25):2716-33. PubMed ID: 27324366
    [No Abstract]   [Full Text] [Related]  

  • 6. Cardiac 3D Printing and its Future Directions.
    Vukicevic M; Mosadegh B; Min JK; Little SH
    JACC Cardiovasc Imaging; 2017 Feb; 10(2):171-184. PubMed ID: 28183437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hands-on surgical training of congenital heart surgery using 3-dimensional print models.
    Yoo SJ; Spray T; Austin EH; Yun TJ; van Arsdell GS
    J Thorac Cardiovasc Surg; 2017 Jun; 153(6):1530-1540. PubMed ID: 28268011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using 3D Physical Modeling to Plan Surgical Corrections of Complex Congenital Heart Defects.
    Vodiskar J; Kütting M; Steinseifer U; Vazquez-Jimenez JF; Sonntag SJ
    Thorac Cardiovasc Surg; 2017 Jan; 65(1):31-35. PubMed ID: 27177266
    [No Abstract]   [Full Text] [Related]  

  • 9. The Various Applications of 3D Printing in Cardiovascular Diseases.
    El Sabbagh A; Eleid MF; Al-Hijji M; Anavekar NS; Holmes DR; Nkomo VT; Oderich GS; Cassivi SD; Said SM; Rihal CS; Matsumoto JM; Foley TA
    Curr Cardiol Rep; 2018 May; 20(6):47. PubMed ID: 29749577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hands-On Surgical Simulation in Congenital Heart Surgery: Literature Review and Future Perspective.
    Hussein N; Honjo O; Haller C; Hickey E; Coles JG; Williams WG; Yoo SJ
    Semin Thorac Cardiovasc Surg; 2020; 32(1):98-105. PubMed ID: 31220532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printing and Heart Failure: The Present and the Future.
    Farooqi KM; Cooper C; Chelliah A; Saeed O; Chai PJ; Jambawalikar SR; Lipson H; Bacha EA; Einstein AJ; Jorde UP
    JACC Heart Fail; 2019 Feb; 7(2):132-142. PubMed ID: 30553901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced technology in interventional cardiology: A roadmap for the future of precision coronary interventions.
    Dugas CM; Schussler JM
    Trends Cardiovasc Med; 2016 Jul; 26(5):466-73. PubMed ID: 27020905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3-D printing: Revolutionizing preoperative planning, resident training, and the future of surgical care.
    Fox M; Peregrin T
    Bull Am Coll Surg; 2016 Jul; 101(7):9-18. PubMed ID: 28941443
    [No Abstract]   [Full Text] [Related]  

  • 14. Discussion.
    J Thorac Cardiovasc Surg; 2015 Jan; 149(1):17. PubMed ID: 25524668
    [No Abstract]   [Full Text] [Related]  

  • 15. Open-heart surgery in neonates: current practice.
    Cho MY; Boettcher W; Redlin M; Wloch A; Schulz A; Miera O; Berger F; Sinzobahamvya N; Photiadis J
    J Cardiovasc Surg (Torino); 2018 Apr; 59(2):299-301. PubMed ID: 28747048
    [No Abstract]   [Full Text] [Related]  

  • 16. Innovations in Preoperative Planning: Insights into Another Dimension Using 3D Printing for Cardiac Disease.
    Farooqi KM; Mahmood F
    J Cardiothorac Vasc Anesth; 2018 Aug; 32(4):1937-1945. PubMed ID: 29277300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional printed models in congenital heart disease.
    Cantinotti M; Valverde I; Kutty S
    Int J Cardiovasc Imaging; 2017 Jan; 33(1):137-144. PubMed ID: 27677762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative assessment of technical performance during hands-on surgical training of the arterial switch operation using 3-dimensional printed heart models.
    Hussein N; Honjo O; Haller C; Coles JG; Hua Z; Van Arsdell G; Yoo SJ
    J Thorac Cardiovasc Surg; 2020 Oct; 160(4):1035-1042. PubMed ID: 31983523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Left Atrial Appendage Closure Guided by 3D Printed Cardiac Reconstruction: Emerging Directions and Future Trends.
    Pellegrino PL; Fassini G; DI Biase M; Tondo C
    J Cardiovasc Electrophysiol; 2016 Jun; 27(6):768-71. PubMed ID: 26915582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Practice improves performance on a coronary anastomosis simulator, attending surgeon supervision does not.
    Walker J
    J Thorac Cardiovasc Surg; 2015 Jan; 149(1):18. PubMed ID: 25524669
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.