BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 32417188)

  • 1. Targeting the spliceosome machinery: A new therapeutic axis in cancer?
    Eymin B
    Biochem Pharmacol; 2021 Jul; 189():114039. PubMed ID: 32417188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics.
    Urbanski LM; Leclair N; Anczuków O
    Wiley Interdiscip Rev RNA; 2018 Jul; 9(4):e1476. PubMed ID: 29693319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of exon-bridging interactions between the minor and major spliceosomes results in alternative splicing around minor introns.
    Olthof AM; White AK; Mieruszynski S; Doggett K; Lee MF; Chakroun A; Abdel Aleem AK; Rousseau J; Magnani C; Roifman CM; Campeau PM; Heath JK; Kanadia RN
    Nucleic Acids Res; 2021 Apr; 49(6):3524-3545. PubMed ID: 33660780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms and Regulation of Alternative Pre-mRNA Splicing.
    Lee Y; Rio DC
    Annu Rev Biochem; 2015; 84():291-323. PubMed ID: 25784052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cancer-Associated Perturbations in Alternative Pre-messenger RNA Splicing.
    Shkreta L; Bell B; Revil T; Venables JP; Prinos P; Elela SA; Chabot B
    Cancer Treat Res; 2013; 158():41-94. PubMed ID: 24222354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers.
    Seiler M; Yoshimi A; Darman R; Chan B; Keaney G; Thomas M; Agrawal AA; Caleb B; Csibi A; Sean E; Fekkes P; Karr C; Klimek V; Lai G; Lee L; Kumar P; Lee SC; Liu X; Mackenzie C; Meeske C; Mizui Y; Padron E; Park E; Pazolli E; Peng S; Prajapati S; Taylor J; Teng T; Wang J; Warmuth M; Yao H; Yu L; Zhu P; Abdel-Wahab O; Smith PG; Buonamici S
    Nat Med; 2018 May; 24(4):497-504. PubMed ID: 29457796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting splicing factors for cancer therapy.
    Bashari A; Siegfried Z; Karni R
    RNA; 2023 Apr; 29(4):506-515. PubMed ID: 36697261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging roles of spliceosome in cancer and immunity.
    Yang H; Beutler B; Zhang D
    Protein Cell; 2022 Aug; 13(8):559-579. PubMed ID: 34196950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of alternative splicing in cancer: From oncogenesis to drug resistance.
    Sciarrillo R; Wojtuszkiewicz A; Assaraf YG; Jansen G; Kaspers GJL; Giovannetti E; Cloos J
    Drug Resist Updat; 2020 Dec; 53():100728. PubMed ID: 33070093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The spliceosome as target for anticancer treatment.
    van Alphen RJ; Wiemer EA; Burger H; Eskens FA
    Br J Cancer; 2009 Jan; 100(2):228-32. PubMed ID: 19034274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of phenothiazine derivatives as UHM-binding inhibitors of early spliceosome assembly.
    Jagtap PKA; Kubelka T; Soni K; Will CL; Garg D; Sippel C; Kapp TG; Potukuchi HK; Schorpp K; Hadian K; Kessler H; Lührmann R; Hausch F; Bach T; Sattler M
    Nat Commun; 2020 Nov; 11(1):5621. PubMed ID: 33159082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteasome inhibitor-induced modulation reveals the spliceosome as a specific therapeutic vulnerability in multiple myeloma.
    Huang HH; Ferguson ID; Thornton AM; Bastola P; Lam C; Lin YT; Choudhry P; Mariano MC; Marcoulis MD; Teo CF; Malato J; Phojanakong PJ; Martin TG; Wolf JL; Wong SW; Shah N; Hann B; Brooks AN; Wiita AP
    Nat Commun; 2020 Apr; 11(1):1931. PubMed ID: 32321912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The spliceosome as a target of novel antitumour drugs.
    Bonnal S; Vigevani L; Valcárcel J
    Nat Rev Drug Discov; 2012 Nov; 11(11):847-59. PubMed ID: 23123942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The architecture of pre-mRNAs affects mechanisms of splice-site pairing.
    Fox-Walsh KL; Dou Y; Lam BJ; Hung SP; Baldi PF; Hertel KJ
    Proc Natl Acad Sci U S A; 2005 Nov; 102(45):16176-81. PubMed ID: 16260721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of SF3B1 by molecules targeting the spliceosome results in massive aberrant exon skipping.
    Wu G; Fan L; Edmonson MN; Shaw T; Boggs K; Easton J; Rusch MC; Webb TR; Zhang J; Potter PM
    RNA; 2018 Aug; 24(8):1056-1066. PubMed ID: 29844105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic Targeting of RNA Splicing in Cancer.
    Bonner EA; Lee SC
    Genes (Basel); 2023 Jun; 14(7):. PubMed ID: 37510283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Splicing diversity revealed by reduced spliceosomes in C. merolae and other organisms.
    Hudson AJ; Stark MR; Fast NM; Russell AG; Rader SD
    RNA Biol; 2015; 12(11):1-8. PubMed ID: 26400738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dysferlin rescue by spliceosome-mediated pre-mRNA trans-splicing targeting introns harbouring weakly defined 3' splice sites.
    Philippi S; Lorain S; Beley C; Peccate C; Précigout G; Spuler S; Garcia L
    Hum Mol Genet; 2015 Jul; 24(14):4049-60. PubMed ID: 25904108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Messenger RNA reprogramming by spliceosome-mediated RNA trans-splicing.
    Garcia-Blanco MA
    J Clin Invest; 2003 Aug; 112(4):474-80. PubMed ID: 12925685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Therapeutic Applications of Targeted Alternative Splicing to Cancer Treatment.
    Lin JC
    Int J Mol Sci; 2017 Dec; 19(1):. PubMed ID: 29283381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.