BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 32417255)

  • 1. Role of damage and management in muscle hypertrophy: Different behaviors of muscle stem cells in regeneration and hypertrophy.
    Fukada SI; Akimoto T; Sotiropoulos A
    Biochim Biophys Acta Mol Cell Res; 2020 Sep; 1867(9):118742. PubMed ID: 32417255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustained expression of HeyL is critical for the proliferation of muscle stem cells in overloaded muscle.
    Fukuda S; Kaneshige A; Kaji T; Noguchi YT; Takemoto Y; Zhang L; Tsujikawa K; Kokubo H; Uezumi A; Maehara K; Harada A; Ohkawa Y; Fukada SI
    Elife; 2019 Sep; 8():. PubMed ID: 31545169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Involvement of muscle stem cell in skeletal muscle hypertrophy induced by mechanical loading and drugs].
    Fukada SI
    Nihon Yakurigaku Zasshi; 2022; 157(1):23-25. PubMed ID: 34980805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The roles of muscle stem cells in muscle injury, atrophy and hypertrophy.
    Fukada SI
    J Biochem; 2018 May; 163(5):353-358. PubMed ID: 29394360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise/Resistance Training and Muscle Stem Cells.
    Fukada SI; Nakamura A
    Endocrinol Metab (Seoul); 2021 Aug; 36(4):737-744. PubMed ID: 34372625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Satellite cell proliferation and skeletal muscle hypertrophy.
    Adams GR
    Appl Physiol Nutr Metab; 2006 Dec; 31(6):782-90. PubMed ID: 17213900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of muscle hypertrophy through granulin: Relayed communication among mesenchymal progenitors, macrophages, and satellite cells.
    Zhang L; Saito H; Higashimoto T; Kaji T; Nakamura A; Iwamori K; Nagano R; Motooka D; Okuzaki D; Uezumi A; Seno S; Fukada SI
    Cell Rep; 2024 Apr; 43(4):114052. PubMed ID: 38573860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of muscle hypertrophy: Involvement of the Akt-independent pathway and satellite cells in muscle hypertrophy.
    Fukada SI; Ito N
    Exp Cell Res; 2021 Dec; 409(2):112907. PubMed ID: 34793776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stem Cell Aging in Skeletal Muscle Regeneration and Disease.
    Yamakawa H; Kusumoto D; Hashimoto H; Yuasa S
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32155842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in muscle satellite cell dynamics during muscle hypertrophy and regeneration.
    Fukada SI; Higashimoto T; Kaneshige A
    Skelet Muscle; 2022 Jul; 12(1):17. PubMed ID: 35794679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of satellite cells in muscle growth and maintenance of muscle mass.
    Pallafacchina G; Blaauw B; Schiaffino S
    Nutr Metab Cardiovasc Dis; 2013 Dec; 23 Suppl 1():S12-8. PubMed ID: 22621743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implication of basal lamina dependency in survival of Nrf2-null muscle stem cells via an antioxidative-independent mechanism.
    Takemoto Y; Inaba S; Zhang L; Tsujikawa K; Uezumi A; Fukada SI
    J Cell Physiol; 2019 Feb; 234(2):1689-1698. PubMed ID: 30070693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regenerative decline of stem cells in sarcopenia.
    Sousa-Victor P; Muñoz-Cánoves P
    Mol Aspects Med; 2016 Aug; 50():109-17. PubMed ID: 26921790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation, Culture, and Analysis of Zebrafish Myofibers and Associated Muscle Stem Cells to Explore Adult Skeletal Myogenesis.
    Ganassi M; Zammit PS; Hughes SM
    Methods Mol Biol; 2023; 2640():21-43. PubMed ID: 36995585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. STAT3 Regulates Self-Renewal of Adult Muscle Satellite Cells during Injury-Induced Muscle Regeneration.
    Zhu H; Xiao F; Wang G; Wei X; Jiang L; Chen Y; Zhu L; Wang H; Diao Y; Wang H; Ip NY; Cheung TH; Wu Z
    Cell Rep; 2016 Aug; 16(8):2102-2115. PubMed ID: 27524611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gli1 marks a sentinel muscle stem cell population for muscle regeneration.
    Peng J; Han L; Liu B; Song J; Wang Y; Wang K; Guo Q; Liu X; Li Y; Zhang J; Wu W; Li S; Fu X; Zhuang CL; Zhang W; Suo S; Hu P; Zhao Y
    Nat Commun; 2023 Nov; 14(1):6993. PubMed ID: 37914731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle stem cells as immunomodulator during regeneration.
    Xu HR; Le VV; Oprescu SN; Kuang S
    Curr Top Dev Biol; 2024; 158():221-238. PubMed ID: 38670707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into muscle stem cell regeneration and mechanobiology.
    Pang KT; Loo LSW; Chia S; Ong FYT; Yu H; Walsh I
    Stem Cell Res Ther; 2023 May; 14(1):129. PubMed ID: 37173707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergist Ablation as a Rodent Model to Study Satellite Cell Dynamics in Adult Skeletal Muscle.
    Kirby TJ; McCarthy JJ; Peterson CA; Fry CS
    Methods Mol Biol; 2016; 1460():43-52. PubMed ID: 27492164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small molecule nicotinamide N-methyltransferase inhibitor activates senescent muscle stem cells and improves regenerative capacity of aged skeletal muscle.
    Neelakantan H; Brightwell CR; Graber TG; Maroto R; Wang HL; McHardy SF; Papaconstantinou J; Fry CS; Watowich SJ
    Biochem Pharmacol; 2019 May; 163():481-492. PubMed ID: 30753815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.