These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 32417265)

  • 1. Poloxamer: A versatile tri-block copolymer for biomedical applications.
    Zarrintaj P; Ramsey JD; Samadi A; Atoufi Z; Yazdi MK; Ganjali MR; Amirabad LM; Zangene E; Farokhi M; Formela K; Saeb MR; Mozafari M; Thomas S
    Acta Biomater; 2020 Jul; 110():37-67. PubMed ID: 32417265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amphiphilic block copolymers in drug delivery: advances in formulation structure and performance.
    Bodratti AM; Alexandridis P
    Expert Opin Drug Deliv; 2018 Nov; 15(11):1085-1104. PubMed ID: 30259762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging Treatment Options of Pluronic in Designing Colloidal Nano and Microcarriers Carriers for Various Therapies.
    Mathur P; Verma R; Rani L; Kamboj S; Kamboj R; Kamboj T; Bhatt S
    Recent Pat Nanotechnol; 2023 Nov; ():. PubMed ID: 38018214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple poloxamers increase plasma membrane repair capacity in muscle and nonmuscle cells.
    Kwiatkowski TA; Rose AL; Jung R; Capati A; Hallak D; Yan R; Weisleder N
    Am J Physiol Cell Physiol; 2020 Feb; 318(2):C253-C262. PubMed ID: 31747313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PEO-PPO block copolymers for passive micellar targeting and overcoming multidrug resistance in cancer therapy.
    Alvarez-Lorenzo C; Sosnik A; Concheiro A
    Curr Drug Targets; 2011 Jul; 12(8):1112-30. PubMed ID: 21443477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poloxamer Hydrogels for Biomedical Applications.
    Russo E; Villa C
    Pharmaceutics; 2019 Dec; 11(12):. PubMed ID: 31835628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PEO-PPO-PEO Tri-Block Copolymers for Gene Delivery Applications in Human Regenerative Medicine-An Overview.
    Rey-Rico A; Cucchiarini M
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29518011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(lactic acid)-poly(ethylene oxide) block copolymers: new directions in self-assembly and biomedical applications.
    Saffer EM; Tew GN; Bhatia SR
    Curr Med Chem; 2011; 18(36):5676-86. PubMed ID: 22172072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligoaniline-based conductive biomaterials for tissue engineering.
    Zarrintaj P; Bakhshandeh B; Saeb MR; Sefat F; Rezaeian I; Ganjali MR; Ramakrishna S; Mozafari M
    Acta Biomater; 2018 May; 72():16-34. PubMed ID: 29625254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methoxy poly(ethylene glycol)-block-poly(delta-valerolactone) copolymer micelles for formulation of hydrophobic drugs.
    Lee H; Zeng F; Dunne M; Allen C
    Biomacromolecules; 2005; 6(6):3119-28. PubMed ID: 16283736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formulation of Poloxamers for Drug Delivery.
    Bodratti AM; Alexandridis P
    J Funct Biomater; 2018 Jan; 9(1):. PubMed ID: 29346330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.
    Gu L; Faig A; Abdelhamid D; Uhrich K
    Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs.
    Chiappetta DA; Sosnik A
    Eur J Pharm Biopharm; 2007 Jun; 66(3):303-17. PubMed ID: 17481869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poloxamer-Based Scaffolds for Tissue Engineering Applications: A Review.
    Cui N; Dai CY; Mao X; Lv X; Gu Y; Lee ES; Jiang HB; Sun Y
    Gels; 2022 Jun; 8(6):. PubMed ID: 35735704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox-Responsive Self-Assembly Micelles from Poly(N-acryloylmorpholine-block-2-acryloyloxyethyl ferrocenecarboxylate) Amphiphilic Block Copolymers as Drug Release Carriers.
    Xu F; Li H; Luo YL; Tang W
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5181-5192. PubMed ID: 28097871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of block copolymer's architecture on its association with lipid membranes: experiments and simulations.
    Frey SL; Zhang D; Carignano MA; Szleifer I; Lee KY
    J Chem Phys; 2007 Sep; 127(11):114904. PubMed ID: 17887877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances of Poly(ether-ether) and Poly(ether-ester) Block Copolymers in Biomedical Applications.
    He ZY; Shi K; Wei YQ; Qian ZY
    Curr Drug Metab; 2016; 17(2):168-86. PubMed ID: 26526833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Criteria Governing Rod Formation and Growth in Nonionic Polymer Micelles.
    McCauley PJ; Kumar S; Calabrese MA
    Langmuir; 2021 Oct; 37(40):11676-11687. PubMed ID: 34601878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Doxorubicin-loaded micelles of reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers as efficient "active" chemotherapeutic agents.
    Cambón A; Rey-Rico A; Mistry D; Brea J; Loza MI; Attwood D; Barbosa S; Alvarez-Lorenzo C; Concheiro A; Taboada P; Mosquera V
    Int J Pharm; 2013 Mar; 445(1-2):47-57. PubMed ID: 23380628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of molecular weight and hydrophobicity of amphiphilic tri-block copolymers in temperature-dependent co-micellization process and drug solubility.
    Lee CF; Yang CH; Lin TL; Bahadur P; Chen LJ
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110461. PubMed ID: 31479972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.