BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32417534)

  • 1. A versatile and modular tetrode-based device for single-unit recordings in rodent ex vivo and in vivo acute preparations.
    Machado F; Sousa N; Monteiro P; Jacinto L
    J Neurosci Methods; 2020 Jul; 341():108755. PubMed ID: 32417534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The DMCdrive: practical 3D-printable micro-drive system for reliable chronic multi-tetrode recording and optogenetic application in freely behaving rodents.
    Kim H; Brünner HS; Carlén M
    Sci Rep; 2020 Jul; 10(1):11838. PubMed ID: 32678238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice.
    Osanai H; Kitamura T; Yamamoto J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TetrODrive: an open-source microdrive for combined electrophysiology and optophysiology.
    Brosch M; Vlasenko A; Ohl FW; Lippert MT
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33908896
    [No Abstract]   [Full Text] [Related]  

  • 5. Single or Double Patch-Clamp Recordings In Ex Vivo Slice Preparation: Functional Connectivity, Synapse Dynamics, and Optogenetics.
    Simonnet J; Richevaux L; Fricker D
    Methods Mol Biol; 2021; 2188():285-309. PubMed ID: 33119858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel tetrode microdrive for simultaneous multi-neuron recording from different regions of primate brain.
    Santos L; Opris I; Fuqua J; Hampson RE; Deadwyler SA
    J Neurosci Methods; 2012 Apr; 205(2):368-74. PubMed ID: 22326226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated μLED optrode for optogenetic stimulation and electrical recording.
    Cao H; Gu L; Mohanty SK; Chiao JC
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):225-9. PubMed ID: 22968201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembled ultraflexible probes for long-term neural recordings and neuromodulation.
    Guan S; Tian H; Yang Y; Liu M; Ding J; Wang J; Fang Y
    Nat Protoc; 2023 Jun; 18(6):1712-1744. PubMed ID: 37248393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-drive array for chronic in vivo recording: tetrode assembly.
    Nguyen DP; Layton SP; Hale G; Gomperts SN; Davidson TJ; Kloosterman F; Wilson MA
    J Vis Exp; 2009 Apr; (26):. PubMed ID: 19387422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex.
    Gray CM; Maldonado PE; Wilson M; McNaughton B
    J Neurosci Methods; 1995 Dec; 63(1-2):43-54. PubMed ID: 8788047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multielectrode recordings from auditory neurons in the brain of a small grasshopper.
    Bhavsar MB; Heinrich R; Stumpner A
    J Neurosci Methods; 2015 Dec; 256():63-73. PubMed ID: 26335799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of in vivo electrophysiology and optogenetics in rodents with PEDOT:PSS neural electrode array.
    Cho YU; Lee JY; Yu KJ
    STAR Protoc; 2024 Mar; 5(1):102909. PubMed ID: 38427565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A drivable optrode for use in chronic electrophysiology and optogenetic experiments.
    Stocke SK; Samuelsen CL
    J Neurosci Methods; 2021 Jan; 348():108979. PubMed ID: 33096153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studying Neuronal Function Ex Vivo Using Optogenetic Stimulation and Patch Clamp.
    Aksoy-Aksel A; Genty J; Zeller M; Ehrlich I
    Methods Mol Biol; 2020; 2173():1-20. PubMed ID: 32651907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of Local Field Potential Microelectrodes for in vivo Recordings from Multiple Brain Structures Simultaneously.
    Brodovskaya A; Shiono S; Batabyal T; Williamson J; Kapur J
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35343955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Wireless Optogenetic Headstage with Multichannel Electrophysiological Recording Capability.
    Gagnon-Turcotte G; Kisomi AA; Ameli R; Camaro CO; LeChasseur Y; Néron JL; Bareil PB; Fortier P; Bories C; de Koninck Y; Gosselin B
    Sensors (Basel); 2015 Sep; 15(9):22776-97. PubMed ID: 26371006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Optically and Electrically Evoked Dopamine Release in Striatal Slices from Digenic Knock-in Mice with DAT-Driven Expression of Channelrhodopsin.
    O'Neill B; Patel JC; Rice ME
    ACS Chem Neurosci; 2017 Feb; 8(2):310-319. PubMed ID: 28177213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Wireless Headstage for Combined Optogenetics and Multichannel Electrophysiological Recording.
    Gagnon-Turcotte G; LeChasseur Y; Bories C; Messaddeq Y; De Koninck Y; Gosselin B
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):1-14. PubMed ID: 27337721
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.