These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32417560)

  • 1. Kinetics of the reaction between hydrogen peroxide and aqueous iodine: Implications for technical and natural aquatic systems.
    Shin J; Lee Y; von Gunten U
    Water Res; 2020 Jul; 179():115852. PubMed ID: 32417560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of Ferrate(VI) with Iodide and Hypoiodous Acid: Kinetics, Pathways, and Implications for the Fate of Iodine during Water Treatment.
    Shin J; von Gunten U; Reckhow DA; Allard S; Lee Y
    Environ Sci Technol; 2018 Jul; 52(13):7458-7467. PubMed ID: 29856214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid oxidation of iodide and hypoiodous acid with ferrate and no formation of iodoform and monoiodoacetic acid in the ferrate/I
    Wang X; Liu Y; Huang Z; Wang L; Wang Y; Li Y; Li J; Qi J; Ma J
    Water Res; 2018 Nov; 144():592-602. PubMed ID: 30092505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fate and transformation of iodine species during Mn(VII)/sulfite treatment in iodide-containing water.
    Shao B; Zhu Y; Chen J; Lin Y; Guan X
    Water Environ Res; 2022; 94(9):e10788. PubMed ID: 36149084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and Mechanistic Aspects of the Reactions of Iodide and Hypoiodous Acid with Permanganate: Oxidation and Disproportionation.
    Zhao X; Salhi E; Liu H; Ma J; von Gunten U
    Environ Sci Technol; 2016 Apr; 50(8):4358-65. PubMed ID: 27003721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-dependent bisphenol A transformation and iodine disinfection byproduct generation by peracetic acid: Kinetic and mechanistic explorations.
    Yang S; He Y; Hua Z; Xie Z; He CS; Xiong Z; Du Y; Liu Y; Xing G; Fang J; Mu Y; Lai B
    Water Res; 2023 Nov; 246():120695. PubMed ID: 37812978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peracetic acid oxidation of saline waters in the absence and presence of H ₂O ₂: secondary oxidant and disinfection byproduct formation.
    Shah AD; Liu ZQ; Salhi E; Höfer T; von Gunten U
    Environ Sci Technol; 2015 Feb; 49(3):1698-705. PubMed ID: 25611970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactions of hypoiodous acid with model compounds and the formation of iodoform in absence/presence of permanganate.
    Zhao X; Ma J; von Gunten U
    Water Res; 2017 Aug; 119():126-135. PubMed ID: 28454008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iodide sources in the aquatic environment and its fate during oxidative water treatment - A critical review.
    MacKeown H; von Gunten U; Criquet J
    Water Res; 2022 Jun; 217():118417. PubMed ID: 35452971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferrate Oxidation of Phenolic Compounds in Iodine-Containing Water: Control of Iodinated Aromatic Products.
    Wang XS; Liu YL; Xu SY; Zhang J; Li J; Song H; Zhang ZX; Wang L; Ma J
    Environ Sci Technol; 2020 Feb; 54(3):1827-1836. PubMed ID: 31763828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence of Iodophenols in Aquatic Environments and the Deiodination of Organic Iodine with Ferrate(VI).
    Wang XS; Liu YL; Li M; Song H; Huang X; Gao Z; Zhang J; Cui CW; Liu BC; Ma J; Wang L
    Environ Sci Technol; 2022 Nov; 56(22):16104-16114. PubMed ID: 36322125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of carbonaceous and nitrogenous iodinated disinfection byproducts from biofilm extracellular polymeric substances by the oxidation of iodide-containing waters with lead dioxide.
    Hu J; Xu Y; Chen Y; Chen J; Dong H; Yu J; Qiang Z; Qu J; Chen J
    Water Res; 2021 Jan; 188():116551. PubMed ID: 33128980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fate and transformation of iodine species in UV irradiation and UV-based advanced oxidation processes.
    Ye T; Zhang TY; Tian FX; Xu B
    Water Res; 2021 Nov; 206():117755. PubMed ID: 34695669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the formation of iodinated aromatic disinfection by-products in chlorine/phenol/iodide system.
    Pan X; Li D; Song H; Chen Q; Yan Q; Zhou C; Huang X; Xin Y; Liu G; Ma J
    Sci Total Environ; 2021 Nov; 797():149152. PubMed ID: 34346366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of Methylparaben by aqueous permanganate in the presence of iodide: Kinetics, modeling, and formation of iodinated aromatic products.
    Li J; Jiang J; Pang SY; Zhou Y; Gao Y; Yang Y; Sun S; Liu G; Ma J; Jiang C; Wang L
    Water Res; 2018 May; 135():75-84. PubMed ID: 29454924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodecomposition of iodinated contrast media and subsequent formation of toxic iodinated moieties during final disinfection with chlorinated oxidants.
    Allard S; Criquet J; Prunier A; Falantin C; Le Person A; Yat-Man Tang J; Croué JP
    Water Res; 2016 Oct; 103():453-461. PubMed ID: 27498253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of iopamidol with ferrate (Fe(VI)): Kinetics and formation of toxic iodinated disinfection by-products.
    Dong H; Qiang Z; Liu S; Li J; Yu J; Qu J
    Water Res; 2018 Mar; 130():200-207. PubMed ID: 29223090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerated oxidation of iopamidol by ozone/peroxymonosulfate (O
    Mao Y; Dong H; Liu S; Zhang L; Qiang Z
    Water Res; 2020 Apr; 173():115615. PubMed ID: 32078858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H
    Srithep S; Phattarapattamawong S
    Chemosphere; 2017 Jun; 176():25-31. PubMed ID: 28254711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of Iodinated Disinfection Byproducts (I-DBPs) in Drinking Water: Emerging Concerns and Current Issues.
    Dong H; Qiang Z; Richardson SD
    Acc Chem Res; 2019 Apr; 52(4):896-905. PubMed ID: 30919613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.