These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

811 related articles for article (PubMed ID: 32417712)

  • 1. IDH1 mutation prediction using MR-based radiomics in glioblastoma: comparison between manual and fully automated deep learning-based approach of tumor segmentation.
    Choi Y; Nam Y; Lee YS; Kim J; Ahn KJ; Jang J; Shin NY; Kim BS; Jeon SS
    Eur J Radiol; 2020 Jul; 128():109031. PubMed ID: 32417712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiregional radiomics profiling from multiparametric MRI: Identifying an imaging predictor of IDH1 mutation status in glioblastoma.
    Li ZC; Bai H; Sun Q; Zhao Y; Lv Y; Zhou J; Liang C; Chen Y; Liang D; Zheng H
    Cancer Med; 2018 Dec; 7(12):5999-6009. PubMed ID: 30426720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma.
    Yu J; Shi Z; Lian Y; Li Z; Liu T; Gao Y; Wang Y; Chen L; Mao Y
    Eur Radiol; 2017 Aug; 27(8):3509-3522. PubMed ID: 28004160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Low-Grade Gliomas Using Multiparametric MR Radiomic Features.
    Ren Y; Zhang X; Rui W; Pang H; Qiu T; Wang J; Xie Q; Jin T; Zhang H; Chen H; Zhang Y; Lu H; Yao Z; Zhang J; Feng X
    J Magn Reson Imaging; 2019 Mar; 49(3):808-817. PubMed ID: 30194745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting glioblastoma molecular subtypes and prognosis with a multimodal model integrating convolutional neural network, radiomics, and semantics.
    Zhong S; Ren JX; Yu ZP; Peng YD; Yu CW; Deng D; Xie Y; He ZQ; Duan H; Wu B; Li H; Yang WZ; Bai Y; Sai K; Chen YS; Guo CC; Li DP; Cheng Y; Zhang XH; Mou YG
    J Neurosurg; 2023 Aug; 139(2):305-314. PubMed ID: 36461822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of IDH1 Mutation Status in Glioblastoma Using Machine Learning Technique Based on Quantitative Radiomic Data.
    Lee MH; Kim J; Kim ST; Shin HM; You HJ; Choi JW; Seol HJ; Nam DH; Lee JI; Kong DS
    World Neurosurg; 2019 May; 125():e688-e696. PubMed ID: 30735871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma.
    Kim M; Jung SY; Park JE; Jo Y; Park SY; Nam SJ; Kim JH; Kim HS
    Eur Radiol; 2020 Apr; 30(4):2142-2151. PubMed ID: 31828414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MRI Radiomic Features to Predict IDH1 Mutation Status in Gliomas: A Machine Learning Approach using Gradient Tree Boosting.
    Sakai Y; Yang C; Kihira S; Tsankova N; Khan F; Hormigo A; Lai A; Cloughesy T; Nael K
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33121211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach.
    Cao M; Suo S; Zhang X; Wang X; Xu J; Yang W; Zhou Y
    Biomed Res Int; 2021; 2021():1235314. PubMed ID: 33553421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MRI Features May Predict Molecular Features of Glioblastoma in
    Park CJ; Han K; Kim H; Ahn SS; Choi D; Park YW; Chang JH; Kim SH; Cha S; Lee SK
    AJNR Am J Neuroradiol; 2021 Mar; 42(3):448-456. PubMed ID: 33509914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A radiomics-clinical nomogram for preoperative prediction of IDH1 mutation in primary glioblastoma multiforme.
    Su X; Sun H; Chen N; Roberts N; Yang X; Wang W; Li J; Huang X; Gong Q; Yue Q
    Clin Radiol; 2020 Dec; 75(12):963.e7-963.e15. PubMed ID: 32921406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Stage Training Framework Using Multicontrast MRI Radiomics for
    Truong NCD; Bangalore Yogananda CG; Wagner BC; Holcomb JM; Reddy D; Saadat N; Hatanpaa KJ; Patel TR; Fei B; Lee MD; Jain R; Bruce RJ; Pinho MC; Madhuranthakam AJ; Maldjian JA
    Radiol Artif Intell; 2024 Jul; 6(4):e230218. PubMed ID: 38775670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MR Imaging-Based Analysis of Glioblastoma Multiforme: Estimation of IDH1 Mutation Status.
    Yamashita K; Hiwatashi A; Togao O; Kikuchi K; Hatae R; Yoshimoto K; Mizoguchi M; Suzuki SO; Yoshiura T; Honda H
    AJNR Am J Neuroradiol; 2016 Jan; 37(1):58-65. PubMed ID: 26405082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning-based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study.
    Chen H; Li S; Zhang Y; Liu L; Lv X; Yi Y; Ruan G; Ke C; Feng Y
    Eur Radiol; 2022 Oct; 32(10):7248-7259. PubMed ID: 35420299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics.
    Choi YS; Bae S; Chang JH; Kang SG; Kim SH; Kim J; Rim TH; Choi SH; Jain R; Lee SK
    Neuro Oncol; 2021 Feb; 23(2):304-313. PubMed ID: 32706862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical Evaluation of a Multiparametric Deep Learning Model for Glioblastoma Segmentation Using Heterogeneous Magnetic Resonance Imaging Data From Clinical Routine.
    Perkuhn M; Stavrinou P; Thiele F; Shakirin G; Mohan M; Garmpis D; Kabbasch C; Borggrefe J
    Invest Radiol; 2018 Nov; 53(11):647-654. PubMed ID: 29863600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of IDH genotype in gliomas with dynamic susceptibility contrast perfusion MR imaging using an explainable recurrent neural network.
    Choi KS; Choi SH; Jeong B
    Neuro Oncol; 2019 Sep; 21(9):1197-1209. PubMed ID: 31127834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined texture analysis of diffusion-weighted imaging with conventional MRI for non-invasive assessment of IDH1 mutation in anaplastic gliomas.
    Su CQ; Lu SS; Zhou MD; Shen H; Shi HB; Hong XN
    Clin Radiol; 2019 Feb; 74(2):154-160. PubMed ID: 30391048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion and perfusion MRI radiomics obtained from deep learning segmentation provides reproducible and comparable diagnostic model to human in post-treatment glioblastoma.
    Park JE; Ham S; Kim HS; Park SY; Yun J; Lee H; Choi SH; Kim N
    Eur Radiol; 2021 May; 31(5):3127-3137. PubMed ID: 33128598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiological features combined with IDH1 status for predicting the survival outcome of glioblastoma patients.
    Wang K; Wang Y; Fan X; Wang J; Li G; Ma J; Ma J; Jiang T; Dai J
    Neuro Oncol; 2016 Apr; 18(4):589-97. PubMed ID: 26409566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.