These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 32417875)

  • 1. Biohybrid robotics with living cell actuation.
    Sun L; Yu Y; Chen Z; Bian F; Ye F; Sun L; Zhao Y
    Chem Soc Rev; 2020 Jun; 49(12):4043-4069. PubMed ID: 32417875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress in engineering functional biohybrid robots actuated by living cells.
    Gao L; Akhtar MU; Yang F; Ahmad S; He J; Lian Q; Cheng W; Zhang J; Li D
    Acta Biomater; 2021 Feb; 121():29-40. PubMed ID: 33285324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Living Materials Herald a New Era in Soft Robotics.
    Appiah C; Arndt C; Siemsen K; Heitmann A; Staubitz A; Selhuber-Unkel C
    Adv Mater; 2019 Sep; 31(36):e1807747. PubMed ID: 31267628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biohybrid Microalgae Robots: Design, Fabrication, Materials, and Applications.
    Zhang F; Li Z; Chen C; Luan H; Fang RH; Zhang L; Wang J
    Adv Mater; 2024 Jan; 36(3):e2303714. PubMed ID: 37471001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biohybrid robots: recent progress, challenges, and perspectives.
    Webster-Wood VA; Guix M; Xu NW; Behkam B; Sato H; Sarkar D; Sanchez S; Shimizu M; Parker KK
    Bioinspir Biomim; 2022 Nov; 18(1):. PubMed ID: 36265472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biohybrid actuators for robotics: A review of devices actuated by living cells.
    Ricotti L; Trimmer B; Feinberg AW; Raman R; Parker KK; Bashir R; Sitti M; Martel S; Dario P; Menciassi A
    Sci Robot; 2017 Nov; 2(12):. PubMed ID: 33157905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biohybrid soft robots with self-stimulating skeletons.
    Guix M; Mestre R; Patiño T; De Corato M; Fuentes J; Zarpellon G; Sánchez S
    Sci Robot; 2021 Apr; 6(53):. PubMed ID: 34043566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic Biohybrid Robots as Efficient Drug Carrier to Generate Plant Cell Clones.
    Huska D; Mayorga-Martinez CC; Zelinka R; Pumera M
    Small; 2022 Jun; 18(23):e2200208. PubMed ID: 35535470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human induced pluripotent stem cell-derived cardiac muscle rings for biohybrid self-beating actuator.
    Morita T; Nie M; Takeuchi S
    Lab Chip; 2024 Jul; 24(14):3377-3387. PubMed ID: 38916038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smart Film Actuators for Biomedical Applications.
    Zhang Z; Wang Y; Wang Q; Shang L
    Small; 2022 Sep; 18(36):e2105116. PubMed ID: 35038215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological Soft Robotics.
    Feinberg AW
    Annu Rev Biomed Eng; 2015; 17():243-65. PubMed ID: 26643022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Folded Hydrogel Tubes for Implantable Muscular Tissue Scaffolds.
    Vannozzi L; Yasa IC; Ceylan H; Menciassi A; Ricotti L; Sitti M
    Macromol Biosci; 2018 Apr; 18(4):e1700377. PubMed ID: 29537714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actuation-Augmented Biohybrid Robot by Hyaluronic Acid-Modified Au Nanoparticles in Muscle Bundles to Evaluate Drug Effects.
    Kim D; Shin M; Choi JH; Choi JW
    ACS Sens; 2022 Mar; 7(3):740-747. PubMed ID: 35138092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiomyocyte-Driven Structural Color Actuation in Anisotropic Inverse Opals.
    Shang Y; Chen Z; Fu F; Sun L; Shao C; Jin W; Liu H; Zhao Y
    ACS Nano; 2019 Jan; 13(1):796-802. PubMed ID: 30566827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in biomimetic soft robotics: fabrication approaches, driven strategies and applications.
    Dong X; Luo X; Zhao H; Qiao C; Li J; Yi J; Yang L; Oropeza FJ; Hu TS; Xu Q; Zeng H
    Soft Matter; 2022 Oct; 18(40):7699-7734. PubMed ID: 36205123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constructing living buildings: a review of relevant technologies for a novel application of biohybrid robotics.
    Heinrich MK; von Mammen S; Hofstadler DN; Wahby M; Zahadat P; Skrzypczak T; Soorati MD; Krela R; Kwiatkowski W; Schmickl T; Ayres P; Stoy K; Hamann H
    J R Soc Interface; 2019 Jul; 16(156):20190238. PubMed ID: 31362616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An autonomously swimming biohybrid fish designed with human cardiac biophysics.
    Lee KY; Park SJ; Matthews DG; Kim SL; Marquez CA; Zimmerman JF; Ardoña HAM; Kleber AG; Lauder GV; Parker KK
    Science; 2022 Feb; 375(6581):639-647. PubMed ID: 35143298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles.
    Tawk C; In Het Panhuis M; Spinks GM; Alici G
    Soft Robot; 2018 Dec; 5(6):685-694. PubMed ID: 30040042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofabrication of Living Actuators.
    Raman R
    Annu Rev Biomed Eng; 2024 Jul; 26(1):223-245. PubMed ID: 38959387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.