These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 32418327)

  • 21. In Silico Identification of Potential Natural Product Inhibitors of Human Proteases Key to SARS-CoV-2 Infection.
    Vivek-Ananth RP; Rana A; Rajan N; Biswal HS; Samal A
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32842606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Salvianolic acid C potently inhibits SARS-CoV-2 infection by blocking the formation of six-helix bundle core of spike protein.
    Yang C; Pan X; Xu X; Cheng C; Huang Y; Li L; Jiang S; Xu W; Xiao G; Liu S
    Signal Transduct Target Ther; 2020 Oct; 5(1):220. PubMed ID: 33024075
    [No Abstract]   [Full Text] [Related]  

  • 23. Active Learning and the Potential of Neural Networks Accelerate Molecular Screening for the Design of a New Molecule Effective against SARS-CoV-2.
    Yassine R; Makrem M; Farhat F
    Biomed Res Int; 2021; 2021():6696012. PubMed ID: 34124259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting the SARS-CoV-2 spike glycoprotein prefusion conformation: virtual screening and molecular dynamics simulations applied to the identification of potential fusion inhibitors.
    Romeo A; Iacovelli F; Falconi M
    Virus Res; 2020 Sep; 286():198068. PubMed ID: 32565126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gold Metallodrugs to Target Coronavirus Proteins: Inhibitory Effects on the Spike-ACE2 Interaction and on PLpro Protease Activity by Auranofin and Gold Organometallics*.
    Gil-Moles M; Basu U; Büssing R; Hoffmeister H; Türck S; Varchmin A; Ott I
    Chemistry; 2020 Nov; 26(66):15140-15144. PubMed ID: 32915473
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A potential solution to avoid overdose of mixed drugs in the event of Covid-19: Nanomedicine at the heart of the Covid-19 pandemic.
    Duverger E; Herlem G; Picaud F
    J Mol Graph Model; 2021 May; 104():107834. PubMed ID: 33516966
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bi-paratopic and multivalent VH domains block ACE2 binding and neutralize SARS-CoV-2.
    Bracken CJ; Lim SA; Solomon P; Rettko NJ; Nguyen DP; Zha BS; Schaefer K; Byrnes JR; Zhou J; Lui I; Liu J; Pance K; ; Zhou XX; Leung KK; Wells JA
    Nat Chem Biol; 2021 Jan; 17(1):113-121. PubMed ID: 33082574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Overview of the Crystallized Structures of the SARS-CoV-2.
    Ionescu MI
    Protein J; 2020 Dec; 39(6):600-618. PubMed ID: 33098476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Docking Paradigm in Drug Design.
    Sulimov VB; Kutov DC; Taschilova AS; Ilin IS; Tyrtyshnikov EE; Sulimov AV
    Curr Top Med Chem; 2021; 21(6):507-546. PubMed ID: 33292135
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Applications of Protein Secondary Structure Algorithms in SARS-CoV-2 Research.
    Kruglikov A; Rakesh M; Wei Y; Xia X
    J Proteome Res; 2021 Mar; 20(3):1457-1463. PubMed ID: 33617253
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular characterization of interactions between the D614G variant of SARS-CoV-2 S-protein and neutralizing antibodies: A computational approach.
    Kwarteng A; Asiedu E; Sylverken AA; Larbi A; Sakyi SA; Asiedu SO
    Infect Genet Evol; 2021 Jul; 91():104815. PubMed ID: 33774178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced Binding of SARS-CoV-2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites.
    Qiao B; Olvera de la Cruz M
    ACS Nano; 2020 Aug; 14(8):10616-10623. PubMed ID: 32806067
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Active Site Inhibitor Induces Conformational Penalties for ACE2 Recognition by the Spike Protein of SARS-CoV-2.
    Williams-Noonan BJ; Todorova N; Kulkarni K; Aguilar MI; Yarovsky I
    J Phys Chem B; 2021 Mar; 125(10):2533-2550. PubMed ID: 33657325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational Design of 25-mer Peptide Binders of SARS-CoV-2.
    Sitthiyotha T; Chunsrivirot S
    J Phys Chem B; 2020 Dec; 124(48):10930-10942. PubMed ID: 33200935
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A computational evaluation of targeted oxidation strategy (TOS) for potential inhibition of SARS-CoV-2 by disulfiram and analogues.
    Xu L; Tong J; Wu Y; Zhao S; Lin BL
    Biophys Chem; 2021 Sep; 276():106610. PubMed ID: 34089978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhanced viral infectivity and systemic COVID-19 infection.
    Fuentes-Prior P
    J Biol Chem; 2021; 296():100135. PubMed ID: 33268377
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The atomic portrait of SARS-CoV-2 as captured by cryo-electron microscopy.
    Fertig TE; Chitoiu L; Terinte-Balcan G; Peteu VE; Marta D; Gherghiceanu M
    J Cell Mol Med; 2022 Jan; 26(1):25-34. PubMed ID: 34904376
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Site-specific characterization of SARS-CoV-2 spike glycoprotein receptor-binding domain.
    Antonopoulos A; Broome S; Sharov V; Ziegenfuss C; Easton RL; Panico M; Dell A; Morris HR; Haslam SM
    Glycobiology; 2021 Apr; 31(3):181-187. PubMed ID: 32886791
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    Bung N; Krishnan SR; Bulusu G; Roy A
    Future Med Chem; 2021 Mar; 13(6):575-585. PubMed ID: 33590764
    [No Abstract]   [Full Text] [Related]  

  • 40. In silico identification of novel SARS-COV-2 2'-O-methyltransferase (nsp16) inhibitors: structure-based virtual screening, molecular dynamics simulation and MM-PBSA approaches.
    El Hassab MA; Ibrahim TM; Al-Rashood ST; Alharbi A; Eskandrani RO; Eldehna WM
    J Enzyme Inhib Med Chem; 2021 Dec; 36(1):727-736. PubMed ID: 33685335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.