These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 32418348)
1. 3D printing of high-strength, porous, elastomeric structures to promote tissue integration of implants. Abar B; Alonso-Calleja A; Kelly A; Kelly C; Gall K; West JL J Biomed Mater Res A; 2021 Jan; 109(1):54-63. PubMed ID: 32418348 [TBL] [Abstract][Full Text] [Related]
2. Deformation and fatigue of tough 3D printed elastomer scaffolds processed by fused deposition modeling and continuous liquid interface production. Miller AT; Safranski DL; Wood C; Guldberg RE; Gall K J Mech Behav Biomed Mater; 2017 Nov; 75():1-13. PubMed ID: 28689135 [TBL] [Abstract][Full Text] [Related]
3. The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds. Samourides A; Browning L; Hearnden V; Chen B Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110384. PubMed ID: 31924046 [TBL] [Abstract][Full Text] [Related]
4. 3D printing and characterization of a soft and biostable elastomer with high flexibility and strength for biomedical applications. Bachtiar EO; Erol O; Millrod M; Tao R; Gracias DH; Romer LH; Kang SH J Mech Behav Biomed Mater; 2020 Apr; 104():103649. PubMed ID: 32174407 [TBL] [Abstract][Full Text] [Related]
5. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications. Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962 [TBL] [Abstract][Full Text] [Related]
6. Stiffness memory nanohybrid scaffolds generated by indirect 3D printing for biologically responsive soft implants. Wu L; Virdee J; Maughan E; Darbyshire A; Jell G; Loizidou M; Emberton M; Butler P; Howkins A; Reynolds A; Boyd IW; Birchall M; Song W Acta Biomater; 2018 Oct; 80():188-202. PubMed ID: 30223094 [TBL] [Abstract][Full Text] [Related]
7. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite. Du C; Hu J; Wu X; Shi H; Yu HC; Qian J; Yin J; Gao C; Wu ZL; Zheng Q J Mater Chem B; 2022 Jan; 10(3):468-476. PubMed ID: 34982091 [TBL] [Abstract][Full Text] [Related]
8. Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK? Torstrick FB; Evans NT; Stevens HY; Gall K; Guldberg RE Clin Orthop Relat Res; 2016 Nov; 474(11):2373-2383. PubMed ID: 27154533 [TBL] [Abstract][Full Text] [Related]
9. 3D printing of photocurable poly(glycerol sebacate) elastomers. Yeh YC; Highley CB; Ouyang L; Burdick JA Biofabrication; 2016 Oct; 8(4):045004. PubMed ID: 27716633 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125 [TBL] [Abstract][Full Text] [Related]
11. 3D-printing porosity: A new approach to creating elevated porosity materials and structures. Jakus AE; Geisendorfer NR; Lewis PL; Shah RN Acta Biomater; 2018 May; 72():94-109. PubMed ID: 29601901 [TBL] [Abstract][Full Text] [Related]
12. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces. Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172 [TBL] [Abstract][Full Text] [Related]
13. A Biodesigned Nanocomposite Biomaterial for Auricular Cartilage Reconstruction. Nayyer L; Jell G; Esmaeili A; Birchall M; Seifalian AM Adv Healthc Mater; 2016 May; 5(10):1203-12. PubMed ID: 26992039 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of Ti + Mg composites by three-dimensional printing of porous Ti and subsequent pressureless infiltration of biodegradable Mg. Meenashisundaram GK; Wang N; Maskomani S; Lu S; Anantharajan SK; Dheen ST; Nai SML; Fuh JYH; Wei J Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110478. PubMed ID: 31923949 [TBL] [Abstract][Full Text] [Related]
15. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153 [TBL] [Abstract][Full Text] [Related]
16. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds. Sultan S; Mathew AP J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812 [TBL] [Abstract][Full Text] [Related]
17. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK. Carpenter RD; Klosterhoff BS; Torstrick FB; Foley KT; Burkus JK; Lee CSD; Gall K; Guldberg RE; Safranski DL J Mech Behav Biomed Mater; 2018 Apr; 80():68-76. PubMed ID: 29414477 [TBL] [Abstract][Full Text] [Related]
18. Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants. Melancon D; Bagheri ZS; Johnston RB; Liu L; Tanzer M; Pasini D Acta Biomater; 2017 Nov; 63():350-368. PubMed ID: 28927929 [TBL] [Abstract][Full Text] [Related]
19. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation. Sahai N; Gogoi M; Tewari RP Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294 [TBL] [Abstract][Full Text] [Related]
20. A tough, precision-porous hydrogel scaffold: ophthalmologic applications. Teng W; Long TJ; Zhang Q; Yao K; Shen TT; Ratner BD Biomaterials; 2014 Oct; 35(32):8916-26. PubMed ID: 25085856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]