These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32418607)

  • 1. Preparation of a novel monolith-based adsorbent for solid-phase microextraction of sulfonamides in complex samples prior to HPLC-MS/MS analysis.
    Wu J; Li Y; Li W; Gong Z; Huang X
    Anal Chim Acta; 2020 Jun; 1118():9-17. PubMed ID: 32418607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-line combining monolith-based in-tube solid phase microextraction and high-performance liquid chromatography- fluorescence detection for the sensitive monitoring of polycyclic aromatic hydrocarbons in complex samples.
    Pang J; Yuan D; Huang X
    J Chromatogr A; 2018 Oct; 1571():29-37. PubMed ID: 30177269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-organic framework-monolith composite-based in-tube solid phase microextraction on-line coupled to high-performance liquid chromatography-fluorescence detection for the highly sensitive monitoring of fluoroquinolones in water and food samples.
    Pang J; Liao Y; Huang X; Ye Z; Yuan D
    Talanta; 2019 Jul; 199():499-506. PubMed ID: 30952290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive determination of perfluoroalkane sulfonamides in water and urine samples by multiple monolithic fiber solid-phase microextraction and liquid chromatography tandem mass spectrometry.
    Huang Y; Lu M; Li H; Bai M; Huang X
    Talanta; 2019 Jan; 192():24-31. PubMed ID: 30348384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene reinforced multiple monolithic fiber solid-phase microextraction of phenoxyacetic acid herbicides in complex samples.
    Pei M; Shi X; Wu J; Huang X
    Talanta; 2019 Jan; 191():257-264. PubMed ID: 30262059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-site sample preparation of trace aromatic amines in environmental waters with monolith-based multichannel in-tip microextraction apparatus followed by HPLC determination.
    Wang Z; Liao Y; Chen L; Huang X
    Talanta; 2020 Dec; 220():121423. PubMed ID: 32928433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of phenyl-boronic acid polymeric monolith by initiator-free ring-opening polymerization for microextraction of sulfonamides prior to their determination by ultra-performance liquid chromatography-tandem mass spectrometry.
    Duan R; Sun L; Yang HY; Ma YR; Deng XY; Peng C; Zheng C; Dong LY; Wang XH
    J Chromatogr A; 2020 Jan; 1609():460510. PubMed ID: 31515077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixed functional monomers-based monolithic adsorbent for the effective extraction of sulfonylurea herbicides in water and soil samples.
    Pei M; Zhu X; Huang X
    J Chromatogr A; 2018 Jan; 1531():13-21. PubMed ID: 29174136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of on-line monolith-based in-tube solid phase microextraction for the sensitive determination of triazoles in environmental waters.
    Pang J; Mei M; Yuan D; Huang X
    Talanta; 2018 Jul; 184():411-417. PubMed ID: 29674062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel polyhedral oligomeric silsesquioxane-based hybrid monolith as a sorbent for on-line in-tube solid phase microextraction of bisphenols in milk prior to high performance liquid chromatography-ultraviolet detection analysis.
    Liu J; Liu Q; Wei L; Chen X; Li Z; Xu Y; Gao X; Lu X; Zhao J
    Food Chem; 2022 Apr; 374():131775. PubMed ID: 34896942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic solid phase extraction of sulfonamides based on carboxylated magnetic graphene oxide nanoparticles in environmental waters.
    Gao PS; Guo Y; Li X; Wang X; Wang J; Qian F; Gu H; Zhang Z
    J Chromatogr A; 2018 Nov; 1575():1-10. PubMed ID: 30228009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient extraction of perfluorocarboxylic acids in complex samples with a monolithic adsorbent combining fluorophilic and anion-exchange interactions.
    Huang Y; Li H; Bai M; Huang X
    Anal Chim Acta; 2018 Jun; 1011():50-58. PubMed ID: 29475485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-phase microextraction of sulfonylurea herbicides by using borate-reinforced multiple monolithic fibers.
    Huang X; Zhu X; Pei M
    Mikrochim Acta; 2018 Mar; 185(4):226. PubMed ID: 29594871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient entrapment of inorganic Se species in water and beer samples with functional groups-rich monolith-based adsorbent.
    Luo S; Song X; Peng J; Huang X
    J Sep Sci; 2022 May; 45(9):1560-1569. PubMed ID: 35199936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive Monitoring of Fluoroquinolones in Milk and Honey Using Multiple Monolithic Fiber Solid-Phase Microextraction Coupled to Liquid Chromatography Tandem Mass Spectrometry.
    Chen L; Huang X
    J Agric Food Chem; 2016 Nov; 64(45):8684-8693. PubMed ID: 27787985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring of selected estrogen mimics in complicated samples using polymeric ionic liquid-based multiple monolithic fiber solid-phase microextraction combined with high-performance liquid chromatography.
    Mei M; Yu J; Huang X; Li H; Lin L; Yuan D
    J Chromatogr A; 2015 Mar; 1385():12-9. PubMed ID: 25680551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Task specific adsorbent based on porous monolith for efficient capture of synthetic colorants in beverages and preserved fruits prior to chromatographic analysis.
    Chen H; Lu M; Huang X
    J Chromatogr A; 2022 Jul; 1675():463144. PubMed ID: 35613506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of monolith/aminated carbon nanotubes composite-based solid-phase microextraction of phenoxycarboxylic acids herbicides in water and soil samples.
    Chen H; Luo S; Huang X
    J Sep Sci; 2021 Dec; 44(23):4284-4294. PubMed ID: 34598310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and evaluation of an adsorbent based on poly (muconic acid-co-divinylbenzene/ethylenedimethacrylate) for multiple monolithic fiber solid-phase microextraction of tetracycline antibiotics.
    Pei M; Huang X
    J Chromatogr A; 2017 Sep; 1517():1-8. PubMed ID: 28844300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption behavior of a metal organic framework of University in Oslo 67 and its application to the extraction of sulfonamides in meat samples.
    Xia L; Dou Y; Gao J; Gao Y; Fan W; Li G; You J
    J Chromatogr A; 2020 May; 1619():460949. PubMed ID: 32057447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.