These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 32420516)
1. Characteristics of novel Ti-10Mo-xCu alloy by powder metallurgy for potential biomedical implant applications. Xu W; Hou C; Mao Y; Yang L; Tamaddon M; Zhang J; Qu X; Liu C; Su B; Lu X Bioact Mater; 2020 Sep; 5(3):659-666. PubMed ID: 32420516 [TBL] [Abstract][Full Text] [Related]
2. Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications. Tang Z; Niu J; Huang H; Zhang H; Pei J; Ou J; Yuan G J Mech Behav Biomed Mater; 2017 Aug; 72():182-191. PubMed ID: 28499166 [TBL] [Abstract][Full Text] [Related]
3. In vitro study on an antibacterial Ti-5Cu alloy for medical application. Ma Z; Li M; Liu R; Ren L; Zhang Y; Pan H; Zhao Y; Yang K J Mater Sci Mater Med; 2016 May; 27(5):91. PubMed ID: 26975748 [TBL] [Abstract][Full Text] [Related]
4. Fabrication and characterisation of low-cost powder metallurgy Ti-xCu-2.5Al alloys produced for biomedical applications. Alshammari Y; Yang F; Bolzoni L J Mech Behav Biomed Mater; 2022 Feb; 126():105022. PubMed ID: 34871955 [TBL] [Abstract][Full Text] [Related]
5. Low-cost powder metallurgy Ti-Cu alloys as a potential antibacterial material. Alshammari Y; Yang F; Bolzoni L J Mech Behav Biomed Mater; 2019 Jul; 95():232-239. PubMed ID: 31035037 [TBL] [Abstract][Full Text] [Related]
6. Mechanical properties of cast Ti-6Al-4V-XCu alloys. Aoki T; Okafor IC; Watanabe I; Hattori M; Oda Y; Okabe T J Oral Rehabil; 2004 Nov; 31(11):1109-14. PubMed ID: 15525390 [TBL] [Abstract][Full Text] [Related]
7. Anti-bacterium influenced corrosion effect of antibacterial Ti-3Cu alloy in Staphylococcus aureus suspension for biomedical application. Zhang Z; Zheng G; Li H; Yang L; Wang X; Qin G; Zhang E Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():376-384. PubMed ID: 30423720 [TBL] [Abstract][Full Text] [Related]
8. Characteristics of novel Ti-40Nb-xCu alloy and surface treatment with superior antibacterial property and biocompatibility using micro-arc oxidation for dental implants. Kang B; Chen X; Qi S; Ma F; Liu P J Mech Behav Biomed Mater; 2024 Sep; 157():106605. PubMed ID: 38852242 [TBL] [Abstract][Full Text] [Related]
9. Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys. Guo S; Lu Y; Wu S; Liu L; He M; Zhao C; Gan Y; Lin J; Luo J; Xu X; Lin J Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():631-640. PubMed ID: 28024632 [TBL] [Abstract][Full Text] [Related]
10. Microstructure, mechanical strength, chemical resistance, and antibacterial behavior of Ti-5Cu- Pandey AK; Gautam RK; Behera CK Biomed Mater; 2022 Jun; 17(4):. PubMed ID: 35679847 [TBL] [Abstract][Full Text] [Related]
11. Mechanical Properties of Ti-Nb-Cu Alloys for Dental Machining Applications. Takahashi M; Sato K; Togawa G; Takada Y J Funct Biomater; 2022 Nov; 13(4):. PubMed ID: 36547524 [TBL] [Abstract][Full Text] [Related]
12. Effect of Ti Wu JH; Chen KK; Chao CY; Chang YH; Du JK Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110433. PubMed ID: 31923945 [TBL] [Abstract][Full Text] [Related]
13. Effect of Cu Content on the Precipitation Behaviors, Mechanical and Corrosion Properties of As-Cast Ti-Cu Alloys. Wang Z; Fu B; Wang Y; Dong T; Li J; Li G; Zhao X; Liu J; Zhang G Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268932 [TBL] [Abstract][Full Text] [Related]
14. In vitro and in vivo studies of anti-bacterial copper-bearing titanium alloy for dental application. Liu R; Tang Y; Zeng L; Zhao Y; Ma Z; Sun Z; Xiang L; Ren L; Yang K Dent Mater; 2018 Aug; 34(8):1112-1126. PubMed ID: 29709241 [TBL] [Abstract][Full Text] [Related]
15. A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications. Lin J; Tong X; Shi Z; Zhang D; Zhang L; Wang K; Wei A; Jin L; Lin J; Li Y; Wen C Acta Biomater; 2020 Apr; 106():410-427. PubMed ID: 32068137 [TBL] [Abstract][Full Text] [Related]
16. Development of Cu-bearing powder metallurgy Ti alloys for biomedical applications. Bolzoni L; Yang F J Mech Behav Biomed Mater; 2019 Sep; 97():41-48. PubMed ID: 31096149 [TBL] [Abstract][Full Text] [Related]
17. Precipitation hardening and microstructure evolution of the Ti-7Nb-10Mo alloy during aging. Yi R; Liu H; Yi D; Wan W; Wang B; Jiang Y; Yang Q; Wang D; Gao Q; Xu Y; Tang Q Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():577-86. PubMed ID: 27040253 [TBL] [Abstract][Full Text] [Related]
18. A new antibacterial titanium-copper sintered alloy: preparation and antibacterial property. Zhang E; Li F; Wang H; Liu J; Wang C; Li M; Yang K Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4280-7. PubMed ID: 23910344 [TBL] [Abstract][Full Text] [Related]
19. The effects of oxygen addition on microstructure and mechanical properties of Ti-Mo alloys for biomedical application. Kobayashi S; Okano S Front Bioeng Biotechnol; 2024; 12():1380503. PubMed ID: 38605992 [TBL] [Abstract][Full Text] [Related]
20. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of as-cast Ti-Cu alloys. Zhang E; Ren J; Li S; Yang L; Qin G Biomed Mater; 2016 Oct; 11(6):065001. PubMed ID: 27767022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]