These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 32420570)
1. Picoliter agar droplet breakup in microfluidics meets microbiology application: numerical and experimental approaches. Khater A; Abdelrehim O; Mohammadi M; Azarmanesh M; Janmaleki M; Salahandish R; Mohamad A; Sanati-Nezhad A Lab Chip; 2020 Jun; 20(12):2175-2187. PubMed ID: 32420570 [TBL] [Abstract][Full Text] [Related]
2. High inertial microfluidics for droplet generation in a flow-focusing geometry. Mastiani M; Seo S; Riou B; Kim M Biomed Microdevices; 2019 Jun; 21(3):50. PubMed ID: 31203430 [TBL] [Abstract][Full Text] [Related]
3. Non-Newtonian Droplet Generation in a Cross-Junction Microfluidic Channel. Fatehifar M; Revell A; Jabbari M Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207574 [TBL] [Abstract][Full Text] [Related]
4. AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale. Huang Y; Wang YL; Wong TN Lab Chip; 2017 Aug; 17(17):2969-2981. PubMed ID: 28745766 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of temperature-actuated droplets within microfluidics. Khater A; Mohammadi M; Mohamad A; Nezhad AS Sci Rep; 2019 Mar; 9(1):3832. PubMed ID: 30846713 [TBL] [Abstract][Full Text] [Related]
7. Dripping, Jetting and Regime Transition of Droplet Formation in a Buoyancy-Assisted Microfluidic Device. Shen C; Liu F; Wu L; Yu C; Yu W Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33121113 [TBL] [Abstract][Full Text] [Related]
8. Prediction of Microdroplet Breakup Regime in Asymmetric T-Junction Microchannels. Cheng WL; Sadr R; Dai J; Han A Biomed Microdevices; 2018 Aug; 20(3):72. PubMed ID: 30105562 [TBL] [Abstract][Full Text] [Related]
9. Effect of Intersection Angle of Input Channels in Droplet Generators. Kim GB; Park YR; Kim SJ; Park KH Molecules; 2022 Mar; 27(6):. PubMed ID: 35335156 [TBL] [Abstract][Full Text] [Related]
10. Control of the breakup process of viscous droplets by an external electric field inside a microfluidic device. Li Y; Jain M; Ma Y; Nandakumar K Soft Matter; 2015 May; 11(19):3884-99. PubMed ID: 25864524 [TBL] [Abstract][Full Text] [Related]
11. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Choi CH; Jung JH; Rhee YW; Kim DP; Shim SE; Lee CS Biomed Microdevices; 2007 Dec; 9(6):855-62. PubMed ID: 17578667 [TBL] [Abstract][Full Text] [Related]
12. Controllable size and form of droplets in microfluidic-assisted devices: Effects of channel geometry and fluid velocity on droplet size. Sartipzadeh O; Naghib SM; Seyfoori A; Rahmanian M; Fateminia FS Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110606. PubMed ID: 32228988 [TBL] [Abstract][Full Text] [Related]
13. Modeling of Droplet Generation in a Microfluidic Flow-Focusing Junction for Droplet Size Control. Ibrahim AM; Padovani JI; Howe RT; Anis YH Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34063839 [TBL] [Abstract][Full Text] [Related]
14. Surface behaviors of droplet manipulation in microfluidics devices. Wu L; Guo Z; Liu W Adv Colloid Interface Sci; 2022 Oct; 308():102770. PubMed ID: 36113310 [TBL] [Abstract][Full Text] [Related]
15. Hybrid Digital-Droplet Microfluidic Chip for Applications in Droplet Digital Nucleic Acid Amplification: Design, Fabrication and Characterization. Coelho BJ; Neto JP; Sieira B; Moura AT; Fortunato E; Martins R; Baptista PV; Igreja R; Águas H Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430841 [TBL] [Abstract][Full Text] [Related]
16. On-chip integration of normal phase high-performance liquid chromatography and droplet microfluidics introducing ethylene glycol as polar continuous phase for the compartmentalization of n-heptane eluents. Peretzki AJ; Belder D J Chromatogr A; 2020 Feb; 1612():460653. PubMed ID: 31706581 [TBL] [Abstract][Full Text] [Related]
17. Droplet Microfluidics for High-Throughput Analysis of Antibiotic Susceptibility in Bacterial Cells and Populations. Postek W; Garstecki P Acc Chem Res; 2022 Mar; 55(5):605-615. PubMed ID: 35119826 [TBL] [Abstract][Full Text] [Related]
18. An integrated chip-mass spectrometry and epifluorescence approach for online monitoring of bioactive metabolites from incubated Actinobacteria in picoliter droplets. Wink K; Mahler L; Beulig JR; Piendl SK; Roth M; Belder D Anal Bioanal Chem; 2018 Nov; 410(29):7679-7687. PubMed ID: 30269162 [TBL] [Abstract][Full Text] [Related]
19. Modeling of droplet traffic in interconnected microfluidic ladder devices. Song K; Zhang L; Hu G Electrophoresis; 2012 Feb; 33(3):411-8. PubMed ID: 22228275 [TBL] [Abstract][Full Text] [Related]
20. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem. Ren Y; Liu Z; Shum HC Lab Chip; 2015 Jan; 15(1):121-34. PubMed ID: 25316203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]