BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 32420594)

  • 1. The Tudor-domain protein TDRD7, mutated in congenital cataract, controls the heat shock protein HSPB1 (HSP27) and lens fiber cell morphology.
    Barnum CE; Al Saai S; Patel SD; Cheng C; Anand D; Xu X; Dash S; Siddam AD; Glazewski L; Paglione E; Polson SW; Chuma S; Mason RW; Wei S; Batish M; Fowler VM; Lachke SA
    Hum Mol Genet; 2020 Jul; 29(12):2076-2097. PubMed ID: 32420594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: Mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency.
    Lachke SA
    Exp Eye Res; 2022 Jan; 214():108889. PubMed ID: 34906599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in the RNA granule component TDRD7 cause cataract and glaucoma.
    Lachke SA; Alkuraya FS; Kneeland SC; Ohn T; Aboukhalil A; Howell GR; Saadi I; Cavallesco R; Yue Y; Tsai AC; Nair KS; Cosma MI; Smith RS; Hodges E; Alfadhli SM; Al-Hajeri A; Shamseldin HE; Behbehani A; Hannon GJ; Bulyk ML; Drack AV; Anderson PJ; John SW; Maas RL
    Science; 2011 Mar; 331(6024):1571-6. PubMed ID: 21436445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-Wide Analysis of Differentially Expressed miRNAs and Their Associated Regulatory Networks in Lenses Deficient for the Congenital Cataract-Linked Tudor Domain Containing Protein TDRD7.
    Anand D; Al Saai S; Shrestha SK; Barnum CE; Chuma S; Lachke SA
    Front Cell Dev Biol; 2021; 9():615761. PubMed ID: 33665188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TDRD7 participates in lens development and spermiogenesis by mediating autophagosome maturation.
    Tu C; Li H; Liu X; Wang Y; Li W; Meng L; Wang W; Li Y; Li D; Du J; Lu G; Lin G; Tan YQ
    Autophagy; 2021 Nov; 17(11):3848-3864. PubMed ID: 33618632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular characterization of mouse lens epithelial cell lines and their suitability to study RNA granules and cataract associated genes.
    Terrell AM; Anand D; Smith SF; Dang CA; Waters SM; Pathania M; Beebe DC; Lachke SA
    Exp Eye Res; 2015 Feb; 131():42-55. PubMed ID: 25530357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of the human lens epithelium-derived cell line SRA01/04.
    Weatherbee BAT; Barton JR; Siddam AD; Anand D; Lachke SA
    Exp Eye Res; 2019 Nov; 188():107787. PubMed ID: 31479653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Transcriptomics of
    Siddam AD; Duot M; Coomson SY; Anand D; Aryal S; Weatherbee BAT; Audic Y; Paillard L; Lachke SA
    Cells; 2023 Apr; 12(7):. PubMed ID: 37048143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinformatics Analysis of Potential Candidates for Therapy of TDRD7 Deficiency-Induced Congenital Cataract.
    Shao DW; Yang CY; Liu B; Chen W; Wang H; Ru HX; Zhang M; Wang Y
    Ophthalmic Res; 2015; 54(1):10-7. PubMed ID: 25997407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cataract-linked RNA-binding protein Celf1 post-transcriptionally controls the spatiotemporal expression of the key homeodomain transcription factors Pax6 and Prox1 in lens development.
    Aryal S; Viet J; Weatherbee BAT; Siddam AD; Hernandez FG; Gautier-Courteille C; Paillard L; Lachke SA
    Hum Genet; 2020 Dec; 139(12):1541-1554. PubMed ID: 32594240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of Hsf4 leads to cataract development in mice through down-regulation of gamma S-crystallin and Bfsp expression.
    Shi X; Cui B; Wang Z; Weng L; Xu Z; Ma J; Xu G; Kong X; Hu L
    BMC Mol Biol; 2009 Feb; 10():10. PubMed ID: 19224648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional characterization of an AQP0 missense mutation, R33C, that causes dominant congenital lens cataract, reveals impaired cell-to-cell adhesion.
    Kumari SS; Gandhi J; Mustehsan MH; Eren S; Varadaraj K
    Exp Eye Res; 2013 Nov; 116():371-85. PubMed ID: 24120416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of the small heat shock protein αA-crystallin does not lead to detectable defects in early zebrafish lens development.
    Posner M; Skiba J; Brown M; Liang JO; Nussbaum J; Prior H
    Exp Eye Res; 2013 Nov; 116():227-33. PubMed ID: 24076322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autophagy and UPR in alpha-crystallin mutant knock-in mouse models of hereditary cataracts.
    Andley UP; Goldman JW
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):234-9. PubMed ID: 26071686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human βA3/A1-crystallin splicing mutation causes cataracts by activating the unfolded protein response and inducing apoptosis in differentiating lens fiber cells.
    Ma Z; Yao W; Chan CC; Kannabiran C; Wawrousek E; Hejtmancik JF
    Biochim Biophys Acta; 2016 Jun; 1862(6):1214-27. PubMed ID: 26851658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further analysis of the lens phenotype in Lim2-deficient mice.
    Shi Y; De Maria AB; Wang H; Mathias RT; FitzGerald PG; Bassnett S
    Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7332-9. PubMed ID: 21775657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of vimentin as a novel target of HSF4 in lens development and cataract by proteomic analysis.
    Mou L; Xu JY; Li W; Lei X; Wu Y; Xu G; Kong X; Xu GT
    Invest Ophthalmol Vis Sci; 2010 Jan; 51(1):396-404. PubMed ID: 19628735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compound mouse mutants of bZIP transcription factors Mafg and Mafk reveal a regulatory network of non-crystallin genes associated with cataract.
    Agrawal SA; Anand D; Siddam AD; Kakrana A; Dash S; Scheiblin DA; Dang CA; Terrell AM; Waters SM; Singh A; Motohashi H; Yamamoto M; Lachke SA
    Hum Genet; 2015 Jul; 134(7):717-35. PubMed ID: 25896808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connexin 50 and AQP0 are Essential in Maintaining Organization and Integrity of Lens Fibers.
    Gu S; Biswas S; Rodriguez L; Li Z; Li Y; Riquelme MA; Shi W; Wang K; White TW; Reilly M; Lo WK; Jiang JX
    Invest Ophthalmol Vis Sci; 2019 Sep; 60(12):4021-4032. PubMed ID: 31560767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A transgenic animal model of osmotic cataract. Part 1: over-expression of bovine Na+/myo-inositol cotransporter in lens fibers.
    Cammarata PR; Zhou C; Chen G; Singh I; Reeves RE; Kuszak JR; Robinson ML
    Invest Ophthalmol Vis Sci; 1999 Jul; 40(8):1727-37. PubMed ID: 10393042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.