These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 32420594)
1. The Tudor-domain protein TDRD7, mutated in congenital cataract, controls the heat shock protein HSPB1 (HSP27) and lens fiber cell morphology. Barnum CE; Al Saai S; Patel SD; Cheng C; Anand D; Xu X; Dash S; Siddam AD; Glazewski L; Paglione E; Polson SW; Chuma S; Mason RW; Wei S; Batish M; Fowler VM; Lachke SA Hum Mol Genet; 2020 Jul; 29(12):2076-2097. PubMed ID: 32420594 [TBL] [Abstract][Full Text] [Related]
2. RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: Mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency. Lachke SA Exp Eye Res; 2022 Jan; 214():108889. PubMed ID: 34906599 [TBL] [Abstract][Full Text] [Related]
3. Mutations in the RNA granule component TDRD7 cause cataract and glaucoma. Lachke SA; Alkuraya FS; Kneeland SC; Ohn T; Aboukhalil A; Howell GR; Saadi I; Cavallesco R; Yue Y; Tsai AC; Nair KS; Cosma MI; Smith RS; Hodges E; Alfadhli SM; Al-Hajeri A; Shamseldin HE; Behbehani A; Hannon GJ; Bulyk ML; Drack AV; Anderson PJ; John SW; Maas RL Science; 2011 Mar; 331(6024):1571-6. PubMed ID: 21436445 [TBL] [Abstract][Full Text] [Related]
4. Genome-Wide Analysis of Differentially Expressed miRNAs and Their Associated Regulatory Networks in Lenses Deficient for the Congenital Cataract-Linked Tudor Domain Containing Protein TDRD7. Anand D; Al Saai S; Shrestha SK; Barnum CE; Chuma S; Lachke SA Front Cell Dev Biol; 2021; 9():615761. PubMed ID: 33665188 [TBL] [Abstract][Full Text] [Related]
5. TDRD7 participates in lens development and spermiogenesis by mediating autophagosome maturation. Tu C; Li H; Liu X; Wang Y; Li W; Meng L; Wang W; Li Y; Li D; Du J; Lu G; Lin G; Tan YQ Autophagy; 2021 Nov; 17(11):3848-3864. PubMed ID: 33618632 [TBL] [Abstract][Full Text] [Related]
6. Molecular characterization of mouse lens epithelial cell lines and their suitability to study RNA granules and cataract associated genes. Terrell AM; Anand D; Smith SF; Dang CA; Waters SM; Pathania M; Beebe DC; Lachke SA Exp Eye Res; 2015 Feb; 131():42-55. PubMed ID: 25530357 [TBL] [Abstract][Full Text] [Related]
7. Molecular characterization of the human lens epithelium-derived cell line SRA01/04. Weatherbee BAT; Barton JR; Siddam AD; Anand D; Lachke SA Exp Eye Res; 2019 Nov; 188():107787. PubMed ID: 31479653 [TBL] [Abstract][Full Text] [Related]
9. Bioinformatics Analysis of Potential Candidates for Therapy of TDRD7 Deficiency-Induced Congenital Cataract. Shao DW; Yang CY; Liu B; Chen W; Wang H; Ru HX; Zhang M; Wang Y Ophthalmic Res; 2015; 54(1):10-7. PubMed ID: 25997407 [TBL] [Abstract][Full Text] [Related]
10. The cataract-linked RNA-binding protein Celf1 post-transcriptionally controls the spatiotemporal expression of the key homeodomain transcription factors Pax6 and Prox1 in lens development. Aryal S; Viet J; Weatherbee BAT; Siddam AD; Hernandez FG; Gautier-Courteille C; Paillard L; Lachke SA Hum Genet; 2020 Dec; 139(12):1541-1554. PubMed ID: 32594240 [TBL] [Abstract][Full Text] [Related]
11. Removal of Hsf4 leads to cataract development in mice through down-regulation of gamma S-crystallin and Bfsp expression. Shi X; Cui B; Wang Z; Weng L; Xu Z; Ma J; Xu G; Kong X; Hu L BMC Mol Biol; 2009 Feb; 10():10. PubMed ID: 19224648 [TBL] [Abstract][Full Text] [Related]
12. Functional characterization of an AQP0 missense mutation, R33C, that causes dominant congenital lens cataract, reveals impaired cell-to-cell adhesion. Kumari SS; Gandhi J; Mustehsan MH; Eren S; Varadaraj K Exp Eye Res; 2013 Nov; 116():371-85. PubMed ID: 24120416 [TBL] [Abstract][Full Text] [Related]
13. Loss of the small heat shock protein αA-crystallin does not lead to detectable defects in early zebrafish lens development. Posner M; Skiba J; Brown M; Liang JO; Nussbaum J; Prior H Exp Eye Res; 2013 Nov; 116():227-33. PubMed ID: 24076322 [TBL] [Abstract][Full Text] [Related]
15. Human βA3/A1-crystallin splicing mutation causes cataracts by activating the unfolded protein response and inducing apoptosis in differentiating lens fiber cells. Ma Z; Yao W; Chan CC; Kannabiran C; Wawrousek E; Hejtmancik JF Biochim Biophys Acta; 2016 Jun; 1862(6):1214-27. PubMed ID: 26851658 [TBL] [Abstract][Full Text] [Related]
16. Further analysis of the lens phenotype in Lim2-deficient mice. Shi Y; De Maria AB; Wang H; Mathias RT; FitzGerald PG; Bassnett S Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7332-9. PubMed ID: 21775657 [TBL] [Abstract][Full Text] [Related]
17. Identification of vimentin as a novel target of HSF4 in lens development and cataract by proteomic analysis. Mou L; Xu JY; Li W; Lei X; Wu Y; Xu G; Kong X; Xu GT Invest Ophthalmol Vis Sci; 2010 Jan; 51(1):396-404. PubMed ID: 19628735 [TBL] [Abstract][Full Text] [Related]
18. Compound mouse mutants of bZIP transcription factors Mafg and Mafk reveal a regulatory network of non-crystallin genes associated with cataract. Agrawal SA; Anand D; Siddam AD; Kakrana A; Dash S; Scheiblin DA; Dang CA; Terrell AM; Waters SM; Singh A; Motohashi H; Yamamoto M; Lachke SA Hum Genet; 2015 Jul; 134(7):717-35. PubMed ID: 25896808 [TBL] [Abstract][Full Text] [Related]
19. Connexin 50 and AQP0 are Essential in Maintaining Organization and Integrity of Lens Fibers. Gu S; Biswas S; Rodriguez L; Li Z; Li Y; Riquelme MA; Shi W; Wang K; White TW; Reilly M; Lo WK; Jiang JX Invest Ophthalmol Vis Sci; 2019 Sep; 60(12):4021-4032. PubMed ID: 31560767 [TBL] [Abstract][Full Text] [Related]
20. A transgenic animal model of osmotic cataract. Part 1: over-expression of bovine Na+/myo-inositol cotransporter in lens fibers. Cammarata PR; Zhou C; Chen G; Singh I; Reeves RE; Kuszak JR; Robinson ML Invest Ophthalmol Vis Sci; 1999 Jul; 40(8):1727-37. PubMed ID: 10393042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]