These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32420839)

  • 1. Neural and Behavioral Outcomes Differ Following Equivalent Bouts of Motor Imagery or Physical Practice.
    Kraeutner SN; Stratas A; McArthur JL; Helmick CA; Westwood DA; Boe SG
    J Cogn Neurosci; 2020 Aug; 32(8):1590-1606. PubMed ID: 32420839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing skill acquisition through motor imagery with no prior physical practice.
    Kraeutner SN; MacKenzie LA; Westwood DA; Boe SG
    J Exp Psychol Hum Percept Perform; 2016 Feb; 42(2):257-65. PubMed ID: 26389615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skill acquisition via motor imagery relies on both motor and perceptual learning.
    Ingram TG; Kraeutner SN; Solomon JP; Westwood DA; Boe SG
    Behav Neurosci; 2016 Apr; 130(2):252-60. PubMed ID: 26854741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leveraging the effector independent nature of motor imagery when it is paired with physical practice.
    Kraeutner SN; McArthur JL; Kraeutner PH; Westwood DA; Boe SG
    Sci Rep; 2020 Dec; 10(1):21335. PubMed ID: 33288785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examining the role of the supplementary motor area in motor imagery-based skill acquisition.
    Solomon JP; Kraeutner SN; O'Neil K; Boe SG
    Exp Brain Res; 2021 Dec; 239(12):3649-3659. PubMed ID: 34609545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor imagery training: Kinesthetic imagery strategy and inferior parietal fMRI activation.
    Lebon F; Horn U; Domin M; Lotze M
    Hum Brain Mapp; 2018 Apr; 39(4):1805-1813. PubMed ID: 29322583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effector independent nature of motor imagery: Evidence from rTMS induced inhibition to the primary motor cortices.
    Kraeutner SN; Ingram TGJ; Boe SG
    Neuropsychologia; 2017 Mar; 97():1-8. PubMed ID: 28131810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel alterations of functional connectivity during execution and imagination after motor imagery learning.
    Zhang H; Xu L; Zhang R; Hui M; Long Z; Zhao X; Yao L
    PLoS One; 2012; 7(5):e36052. PubMed ID: 22629308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor imagery-based brain activity parallels that of motor execution: evidence from magnetic source imaging of cortical oscillations.
    Kraeutner S; Gionfriddo A; Bardouille T; Boe S
    Brain Res; 2014 Nov; 1588():81-91. PubMed ID: 25251592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of hand motor skill performance induced by motor practice combined with matched or mismatched hand posture motor imagery.
    Meng HJ; Zhang LL; Luo SS; Cao N; Zhang J; Pi YL
    Physiol Behav; 2020 Oct; 225():113084. PubMed ID: 32687923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodal functional imaging of motor imagery using a novel paradigm.
    Burianová H; Marstaller L; Sowman P; Tesan G; Rich AN; Williams M; Savage G; Johnson BW
    Neuroimage; 2013 May; 71():50-8. PubMed ID: 23319043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laterality of brain activity during motor imagery is modulated by the provision of source level neurofeedback.
    Boe S; Gionfriddo A; Kraeutner S; Tremblay A; Little G; Bardouille T
    Neuroimage; 2014 Nov; 101():159-67. PubMed ID: 24999037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consolidation and retention of motor skill after motor imagery training.
    Bonassi G; Lagravinese G; Bisio A; Ruggeri P; Pelosin E; Bove M; Avanzino L
    Neuropsychologia; 2020 Jun; 143():107472. PubMed ID: 32325154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modality of practice modulates resting state connectivity during motor learning.
    Kraeutner SN; Cui AX; Boyd LA; Boe SG
    Neurosci Lett; 2022 Jun; 781():136659. PubMed ID: 35483502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different pedagogical approaches to motor imagery both demonstrate individualized movement patterns to achieve improved performance outcomes when learning a complex motor skill.
    Lindsay RS; Komar J; Chow JY; Larkin P; Spittle M
    PLoS One; 2023; 18(11):e0282647. PubMed ID: 38019823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep contribution to motor memory consolidation: a motor imagery study.
    Debarnot U; Creveaux T; Collet C; Doyon J; Guillot A
    Sleep; 2009 Dec; 32(12):1559-65. PubMed ID: 20041591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor imagery-based skill acquisition disrupted following rTMS of the inferior parietal lobule.
    Kraeutner SN; Keeler LT; Boe SG
    Exp Brain Res; 2016 Feb; 234(2):397-407. PubMed ID: 26487181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavioral improvements and brain functional alterations by motor imagery training.
    Zhang H; Xu L; Wang S; Xie B; Guo J; Long Z; Yao L
    Brain Res; 2011 Aug; 1407():38-46. PubMed ID: 21764038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of physical training versus combined action observation and motor imagery in conjunction with physical training on upper-extremity performance.
    Sakaguchi Y; Yamasaki S
    Somatosens Mot Res; 2021 Dec; 38(4):366-372. PubMed ID: 34645365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Descriptive pilot study of vividness and temporal equivalence during motor imagery training after quadriplegia.
    Mateo S; Reilly KT; Collet C; Rode G
    Ann Phys Rehabil Med; 2018 Sep; 61(5):300-308. PubMed ID: 29944923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.