BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32420985)

  • 1. Combined Infusion and Stimulation with Fast-Scan Cyclic Voltammetry (CIS-FSCV) to Assess Ventral Tegmental Area Receptor Regulation of Phasic Dopamine.
    Wickham RJ; Lehr M; Mitchell L; Addy NA
    J Vis Exp; 2020 Apr; (158):. PubMed ID: 32420985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ventral tegmental area α6β2 nicotinic acetylcholine receptors modulate phasic dopamine release in the nucleus accumbens core.
    Wickham R; Solecki W; Rathbun L; McIntosh JM; Addy NA
    Psychopharmacology (Berl); 2013 Sep; 229(1):73-82. PubMed ID: 23624852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha-2A but not 2B/C noradrenergic receptors in ventral tegmental area regulate phasic dopamine release in nucleus accumbens core.
    Joanna B; Michal K; Agnieszka WB; Katarzyna Z; Marzena M; Ryszard P; Wojciech S
    Neuropharmacology; 2022 Dec; 220():109258. PubMed ID: 36116534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential regulation of phasic dopamine release in the forebrain by the VTA noradrenergic receptor signaling.
    Kielbinski M; Bernacka J; Solecki WB
    J Neurochem; 2019 Jun; 149(6):747-759. PubMed ID: 31001835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential role of ventral tegmental area acetylcholine and N-methyl-D-aspartate receptors in cocaine-seeking.
    Solecki W; Wickham RJ; Behrens S; Wang J; Zwerling B; Mason GF; Addy NA
    Neuropharmacology; 2013 Dec; 75():9-18. PubMed ID: 23850572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep brain stimulation of the medial forebrain bundle elevates striatal dopamine concentration without affecting spontaneous or reward-induced phasic release.
    Klanker M; Feenstra M; Willuhn I; Denys D
    Neuroscience; 2017 Nov; 364():82-92. PubMed ID: 28918253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noradrenergic Modulation of Dopamine Transmission Evoked by Electrical Stimulation of the Locus Coeruleus in the Rat Brain.
    Park JW; Bhimani RV; Park J
    ACS Chem Neurosci; 2017 Sep; 8(9):1913-1924. PubMed ID: 28594540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ventral tegmental ionotropic glutamate receptor stimulation of nucleus accumbens tonic dopamine efflux blunts hindbrain-evoked phasic neurotransmission: implications for dopamine dysregulation disorders.
    Tye SJ; Miller AD; Blaha CD
    Neuroscience; 2013 Nov; 252():337-45. PubMed ID: 23962648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic changes in dopamine tone during self-stimulation of the ventral tegmental area in rats.
    Hernández G; Shizgal P
    Behav Brain Res; 2009 Mar; 198(1):91-7. PubMed ID: 18996152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMDA Receptor-Dependent Cholinergic Modulation of Mesolimbic Dopamine Cell Bodies: Neurochemical and Behavioral Studies.
    Spanos M; Xie X; Gras-Najjar J; White SC; Sombers LA
    ACS Chem Neurosci; 2019 Mar; 10(3):1497-1505. PubMed ID: 30412381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The area postrema (AP) and the parabrachial nucleus (PBN) are important sites for salmon calcitonin (sCT) to decrease evoked phasic dopamine release in the nucleus accumbens (NAc).
    Whiting L; McCutcheon JE; Boyle CN; Roitman MF; Lutz TA
    Physiol Behav; 2017 Jul; 176():9-16. PubMed ID: 28342771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential involvement of ventral tegmental GABA(A) and GABA(B) receptors in the regulation of the nucleus accumbens dopamine response to stress.
    Doherty M; Gratton A
    Brain Res; 2007 May; 1150():62-8. PubMed ID: 17395162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examination of Rapid Dopamine Dynamics with Fast Scan Cyclic Voltammetry During Intra-oral Tastant Administration in Awake Rats.
    Wickham RJ; Park J; Nunes EJ; Addy NA
    J Vis Exp; 2015 Aug; (102):e52468. PubMed ID: 26325447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ventral Tegmental Area M5 Muscarinic Receptors Mediate Effort-Choice Responding and Nucleus Accumbens Dopamine in a Sex-Specific Manner .
    Nunes EJ; Kebede N; Haight JL; Foster DJ; Lindsley CW; Conn PJ; Addy NA
    J Pharmacol Exp Ther; 2023 May; 385(2):146-156. PubMed ID: 36828630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute stress modulates noradrenergic signaling in the ventral tegmental area-amygdalar circuit.
    Kielbinski M; Bernacka J; Zajda K; Wawrzczak-Bargieła A; Maćkowiak M; Przewlocki R; Solecki W
    J Neurochem; 2023 Mar; 164(5):598-612. PubMed ID: 36161462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypocretin receptor 1 knockdown in the ventral tegmental area attenuates mesolimbic dopamine signaling and reduces motivation for cocaine.
    Bernstein DL; Badve PS; Barson JR; Bass CE; España RA
    Addict Biol; 2018 Sep; 23(5):1032-1045. PubMed ID: 28971565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct limbic dopamine regulation across olfactory-tubercle subregions through integration of in vivo fast-scan cyclic voltammetry and optogenetics.
    Bhimani RV; Yates R; Bass CE; Park J
    J Neurochem; 2022 Apr; 161(1):53-68. PubMed ID: 35061915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systemic nicotine stimulates dopamine release in nucleus accumbens: re-evaluation of the role of N-methyl-D-aspartate receptors in the ventral tegmental area.
    Fu Y; Matta SG; Gao W; Brower VG; Sharp BM
    J Pharmacol Exp Ther; 2000 Aug; 294(2):458-65. PubMed ID: 10900219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient receptor potential vanilloid 3 (TRPV3) in the ventral tegmental area of rat: Role in modulation of the mesolimbic-dopamine reward pathway.
    Singh U; Kumar S; Shelkar GP; Yadav M; Kokare DM; Goswami C; Lechan RM; Singru PS
    Neuropharmacology; 2016 Nov; 110(Pt A):198-210. PubMed ID: 27084697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insulin in the ventral tegmental area reduces cocaine-evoked dopamine in the nucleus accumbens in vivo.
    Naef L; Seabrook L; Hsiao J; Li C; Borgland SL
    Eur J Neurosci; 2019 Aug; 50(3):2146-2155. PubMed ID: 30471157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.