These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32421301)

  • 1. Protonic Ceramic Electrochemical Cell for Efficient Separation of Hydrogen.
    Tong Y; Meng X; Luo T; Cui C; Wang Y; Wang S; Peng R; Xie B; Chen C; Zhan Z
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):25809-25817. PubMed ID: 32421301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen Separation and Purification from Various Gas Mixtures by Means of Electrochemical Membrane Technology in the Temperature Range 100-160 °C.
    Vermaak L; Neomagus HWJP; Bessarabov DG
    Membranes (Basel); 2021 Apr; 11(4):. PubMed ID: 33920305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells.
    Duan C; Kee RJ; Zhu H; Karakaya C; Chen Y; Ricote S; Jarry A; Crumlin EJ; Hook D; Braun R; Sullivan NP; O'Hayre R
    Nature; 2018 May; 557(7704):217-222. PubMed ID: 29743690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic Insights for Electrochemical Hydrogen Compression with Proton-Conducting Membranes.
    Kee BL; Curran D; Zhu H; Braun RJ; DeCaluwe SC; Kee RJ; Ricote S
    Membranes (Basel); 2019 Jul; 9(7):. PubMed ID: 31266218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-electrolysis of steam and CO2 in full-ceramic symmetrical SOECs: a strategy for avoiding the use of hydrogen as a safe gas.
    Torrell M; García-Rodríguez S; Morata A; Penelas G; Tarancón A
    Faraday Discuss; 2015; 182():241-55. PubMed ID: 26204959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production.
    Ding H; Wu W; Jiang C; Ding Y; Bian W; Hu B; Singh P; Orme CJ; Wang L; Zhang Y; Ding D
    Nat Commun; 2020 Apr; 11(1):1907. PubMed ID: 32312963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct methane protonic ceramic fuel cells with self-assembled Ni-Rh bimetallic catalyst.
    Hong K; Choi M; Bae Y; Min J; Lee J; Kim D; Bang S; Lee HK; Lee W; Hong J
    Nat Commun; 2023 Nov; 14(1):7485. PubMed ID: 37980343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of electrochemical impedance spectra for electrolyte-supported solid oxide fuel cells (SOFCs) and protonic ceramic fuel cells (PCFCs).
    Sumi H; Shimada H; Yamaguchi Y; Mizutani Y; Okuyama Y; Amezawa K
    Sci Rep; 2021 May; 11(1):10622. PubMed ID: 34012004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Efficient High-Entropy Perovskite-Type Air Electrode for Reversible Oxygen Reduction and Water Splitting in Protonic Ceramic Cells.
    He F; Zhou Y; Hu T; Xu Y; Hou M; Zhu F; Liu D; Zhang H; Xu K; Liu M; Chen Y
    Adv Mater; 2023 Apr; 35(16):e2209469. PubMed ID: 36722205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Readily processed protonic ceramic fuel cells with high performance at low temperatures.
    Duan C; Tong J; Shang M; Nikodemski S; Sanders M; Ricote S; Almansoori A; O'Hayre R
    Science; 2015 Sep; 349(6254):1321-6. PubMed ID: 26217064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protonic Ceramic Electrochemical Cells for Synthesizing Sustainable Chemicals and Fuels.
    Liu F; Ding D; Duan C
    Adv Sci (Weinh); 2023 Mar; 10(8):e2206478. PubMed ID: 36651120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrode-Supported Protonic Ceramic Electrolysis Cells for Electrochemically Promoted Ammonia Synthesis at Intermediate Temperatures.
    Okazaki M; Otomo J
    ACS Omega; 2023 Oct; 8(43):40299-40308. PubMed ID: 37929123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Construction of Efficient Interfaces Ensures High-Performance Direct Ammonia Protonic Ceramic Fuel Cells.
    He F; Hou M; Du Z; Zhu F; Cao X; Ding Y; Zhou Y; Liu M; Chen Y
    Adv Mater; 2023 Oct; 35(42):e2304957. PubMed ID: 37640369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring an Interface Microstructure for High-Performance Reversible Protonic Ceramic Electrochemical Cells via Soft Lithography.
    Lee C; Shin SS; Kim J; Choi J; Choi M; Shin HH
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32124-32133. PubMed ID: 35790382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: a review.
    Lu HT; Li W; Miandoab ES; Kanehashi S; Hu G
    Front Chem Sci Eng; 2021; 15(3):464-482. PubMed ID: 33391844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Closed Bipolar Electrodes for Spatial Separation of H
    Goodwin S; Walsh DA
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23654-23661. PubMed ID: 28654236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ammonia-fed reversible protonic ceramic fuel cells with Ru-based catalyst.
    Zhu L; Cadigan C; Duan C; Huang J; Bian L; Le L; Hernandez CH; Avance V; O'Hayre R; Sullivan NP
    Commun Chem; 2021 Aug; 4(1):121. PubMed ID: 36697696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revitalizing interface in protonic ceramic cells by acid etch.
    Bian W; Wu W; Wang B; Tang W; Zhou M; Jin C; Ding H; Fan W; Dong Y; Li J; Ding D
    Nature; 2022 Apr; 604(7906):479-485. PubMed ID: 35444323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation.
    Rakowski DuBois M; DuBois DL
    Acc Chem Res; 2009 Dec; 42(12):1974-82. PubMed ID: 19645445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells.
    Pei K; Zhou Y; Xu K; Zhang H; Ding Y; Zhao B; Yuan W; Sasaki K; Choi Y; Chen Y; Liu M
    Nat Commun; 2022 Apr; 13(1):2207. PubMed ID: 35459865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.