These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32421326)

  • 1. Hybrid Sorbents for
    Cordova EA; Garayburu-Caruso V; Pearce CI; Cantrell KJ; Morad JW; Gillispie EC; Riley BJ; Colon FC; Levitskaia TG; Saslow SA; Qafoku O; Resch CT; Rigali MJ; Szecsody JE; Heald SM; Balasubramanian M; Meyers P; Freedman VL
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26113-26126. PubMed ID: 32421326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radioiodine sorption/desorption and speciation transformation by subsurface sediments from the Hanford Site.
    Xu C; Kaplan DI; Zhang S; Athon M; Ho YF; Li HP; Yeager CM; Schwehr KA; Grandbois R; Wellman D; Santschi PH
    J Environ Radioact; 2015 Jan; 139():43-55. PubMed ID: 25464040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of materials for iodine and technetium immobilization through sorption and redox-driven processes.
    Pearce CI; Cordova EA; Garcia WL; Saslow SA; Cantrell KJ; Morad JW; Qafoku O; Matyáš J; Plymale AE; Chatterjee S; Kang J; Colon FC; Levitskaia TG; Rigali MJ; Szecsody JE; Heald SM; Balasubramanian M; Wang S; Sun DT; Queen WL; Bontchev R; Moore RC; Freedman VL
    Sci Total Environ; 2020 May; 716():136167. PubMed ID: 31955840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal capacity and chemical speciation of groundwater iodide (I
    Li D; Kaplan DI; Sams A; Powell BA; Knox AS
    J Environ Radioact; 2018 Dec; 192():505-512. PubMed ID: 30114621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and Numerical Study of Radioiodine Sorption and Transport in Hanford Sediments.
    He X; Rockhold ML; Fang Y; Lawter AR; Freedman VL; Mackley RD; Qafoku NP
    ACS Earth Space Chem; 2024 Feb; 8(2):323-334. PubMed ID: 38379836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous immobilization of aqueous co-contaminants using a bismuth layered material.
    Lawter AR; Levitskaia TG; Qafoku O; Bowden ME; Colon FC; Qafoku NP
    J Environ Radioact; 2021 Oct; 237():106711. PubMed ID: 34388522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ precipitation of hydrous ferric oxide (HFO) for remediation of subsurface iodine contamination.
    Wang G; Szecsody JE; Avalos NM; Qafoku NP; Freedman VL
    J Contam Hydrol; 2020 Nov; 235():103705. PubMed ID: 32927336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver-functionalized silica aerogels and their application in the removal of iodine from aqueous environments.
    Asmussen RM; Matyáš J; Qafoku NP; Kruger AA
    J Hazard Mater; 2019 Nov; 379():119364. PubMed ID: 29753522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of three resin-based materials for treating uranium-contaminated groundwater within a PRB.
    Barton CS; Stewart DI; Morris K; Bryant DE
    J Hazard Mater; 2004 Dec; 116(3):191-204. PubMed ID: 15601612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ remediation of groundwater contaminated by heavy- and transition-metal ions by selective ion-exchange methods.
    Vilensky MY; Berkowitz B; Warshawsky A
    Environ Sci Technol; 2002 Apr; 36(8):1851-5. PubMed ID: 11993887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic and fluoride removal from contaminated drinking water with Haix-Fe-Zr and Haix-Zr resin beads.
    Phillips DH; Sen Gupta B; Mukhopadhyay S; Sen Gupta AK
    J Environ Manage; 2018 Jun; 215():132-142. PubMed ID: 29567553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uranium removal from contaminated groundwater by synthetic resins.
    Phillips DH; Gu B; Watson DB; Parmele CS
    Water Res; 2008 Jan; 42(1-2):260-8. PubMed ID: 17697694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymerin and lignimerin, as humic acid-like sorbents from vegetable waste, for the potential remediation of waters contaminated with heavy metals, herbicides, or polycyclic aromatic hydrocarbons.
    Capasso R; De Martino A
    J Agric Food Chem; 2010 Oct; 58(19):10283-99. PubMed ID: 20828126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient removal of mercury from simulated groundwater using thiol-modified graphene oxide/Fe-Mn composite in fixed-bed columns: Experimental performance and mathematical modeling.
    Huang Y; Wang M; Gong Y; Zeng EY
    Sci Total Environ; 2020 Apr; 714():136636. PubMed ID: 31991272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ranking traditional and nano-enabled sorbents for simultaneous removal of arsenic and chromium from simulated groundwater.
    Gifford M; Hristovski K; Westerhoff P
    Sci Total Environ; 2017 Dec; 601-602():1008-1014. PubMed ID: 28599363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technetium and iodine aqueous species immobilization and transformations in the presence of strong reductants and calcite-forming solutions: Remedial action implications.
    Lawter AR; Garcia WL; Kukkadapu RK; Qafoku O; Bowden ME; Saslow SA; Qafoku NP
    Sci Total Environ; 2018 Sep; 636():588-595. PubMed ID: 29723831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iodine immobilization by materials through sorption and redox-driven processes: A literature review.
    Moore RC; Pearce CI; Morad JW; Chatterjee S; Levitskaia TG; Asmussen RM; Lawter AR; Neeway JJ; Qafoku NP; Rigali MJ; Saslow SA; Szecsody JE; Thallapally PK; Wang G; Freedman VL
    Sci Total Environ; 2020 May; 716():132820. PubMed ID: 31982189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient sorption of Cu(2+) by composite chelating sorbents based on potato starch-graft-polyamidoxime embedded in chitosan beads.
    Dragan ES; Apopei Loghin DF; Cocarta AI
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16577-92. PubMed ID: 25191990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iodine-129 and iodine-127 speciation in groundwater at the Hanford site, US: iodate incorporation into calcite.
    Zhang S; Xu C; Creeley D; Ho YF; Li HP; Grandbois R; Schwehr KA; Kaplan DI; Yeager CM; Wellman D; Santschi PH
    Environ Sci Technol; 2013 Sep; 47(17):9635-42. PubMed ID: 23885783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of technetium-99 in complex groundwater matrixes using a radiometric preconcentrating minicolumn sensor in an equilibration-based sensing approach.
    O'Hara MJ; Burge SR; Grate JW
    Anal Chem; 2009 Feb; 81(3):1068-78. PubMed ID: 19178339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.