These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32421344)

  • 1. Effects of Amino Acids on Iron-Silicate Chemical Garden Precipitation.
    Hooks MR; Webster P; Weber JM; Perl S; Barge LM
    Langmuir; 2020 Jun; 36(21):5793-5801. PubMed ID: 32421344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of the Presence of Amino Acids on the Precipitation of Inorganic Chemical-Garden Membranes: Biomineralization at the Origin of Life.
    Borrego-Sánchez A; Gutiérrez-Ariza C; Sainz-Díaz CI; Cartwright JHE
    Langmuir; 2022 Aug; 38(34):10538-10547. PubMed ID: 35974697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of iron-phosphate-silicate chemical garden structures.
    Barge LM; Doloboff IJ; White LM; Stucky GD; Russell MJ; Kanik I
    Langmuir; 2012 Feb; 28(8):3714-21. PubMed ID: 22035594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Chemical Gardens to Fuel Cells: Generation of Electrical Potential and Current Across Self-Assembling Iron Mineral Membranes.
    Barge LM; Abedian Y; Russell MJ; Doloboff IJ; Cartwright JH; Kidd RD; Kanik I
    Angew Chem Int Ed Engl; 2015 Jul; 54(28):8184-7. PubMed ID: 25968422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Gardens as Flow-through Reactors Simulating Natural Hydrothermal Systems.
    Barge LM; Abedian Y; Doloboff IJ; Nuñez JE; Russell MJ; Kidd RD; Kanik I
    J Vis Exp; 2015 Nov; (105):. PubMed ID: 26650915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion and precipitation processes in iron-based silica gardens.
    Glaab F; Rieder J; García-Ruiz JM; Kunz W; Kellermeier M
    Phys Chem Chem Phys; 2016 Sep; 18(36):24850-8. PubMed ID: 27397509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic labyrinth self-assembled by a chemical garden.
    Testón-Martínez S; Huertas-Roldán T; Knoll P; Barge LM; Sainz-Díaz CI; Cartwright JHE
    Phys Chem Chem Phys; 2023 Nov; 25(44):30469-30476. PubMed ID: 37921059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Silicate Garden Reaction in Microgravity: A Fluid Interfacial Instability.
    Jones DEH; Walter U
    J Colloid Interface Sci; 1998 Jul; 203(2):286-93. PubMed ID: 9705766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Downward fingering accompanies upward tube growth in a chemical garden grown in a vertical confined geometry.
    Ding Y; Gutiérrez-Ariza CM; Zheng M; Felgate A; Lawes A; Sainz-Díaz CI; Cartwright JHE; Cardoso SSS
    Phys Chem Chem Phys; 2022 Jul; 24(29):17841-17851. PubMed ID: 35851594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical-garden formation, morphology, and composition. II. Chemical gardens in microgravity.
    Cartwright JH; Escribano B; Sainz-Díaz CI; Stodieck LS
    Langmuir; 2011 Apr; 27(7):3294-300. PubMed ID: 21391639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Evaluation of Chemical Garden Growth Techniques.
    Aslanbay Guler B; Demirel Z; Imamoglu E
    Langmuir; 2023 Sep; 39(38):13611-13619. PubMed ID: 37712591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembling iron oxyhydroxide/oxide tubular structures: laboratory-grown and field examples from Rio Tinto.
    Barge LM; Cardoso SS; Cartwright JH; Doloboff IJ; Flores E; Macías-Sánchez E; Sainz-Díaz CI; Sobrón P
    Proc Math Phys Eng Sci; 2016 Nov; 472(2195):20160466. PubMed ID: 27956875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale Anatomy of Iron-Silica Self-Organized Membranes: Implications for Prebiotic Chemistry.
    Kotopoulou E; Lopez-Haro M; Calvino Gamez JJ; García-Ruiz JM
    Angew Chem Int Ed Engl; 2021 Jan; 60(3):1396-1402. PubMed ID: 33022871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical-garden formation, morphology, and composition. I. Effect of the nature of the cations.
    Cartwright JH; Escribano B; Sainz-Daz CI
    Langmuir; 2011 Apr; 27(7):3286-93. PubMed ID: 21391635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rediscovering Chemical Gardens: Self-Assembling Cytocompatible Protein-Intercalated Silicate-Phosphate Sponge-Mimetic Tubules.
    Punia K; Bucaro M; Mancuso A; Cuttitta C; Marsillo A; Bykov A; L'Amoreaux W; Raja KS
    Langmuir; 2016 Aug; 32(34):8748-58. PubMed ID: 27443165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissimilar chemobrionic growth in copper silicate chemical gardens in the absence or presence of light.
    Patel VK; Busupalli B
    Chem Commun (Camb); 2023 Jan; 59(6):768-771. PubMed ID: 36546324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genericity of confined chemical garden patterns with regard to changes in the reactants.
    Haudin F; Brasiliense V; Cartwright JH; Brau F; De Wit A
    Phys Chem Chem Phys; 2015 May; 17(19):12804-11. PubMed ID: 25908388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of silicate on the formation and stability of Ni-Al LDH at the γ-Al2O3 surface.
    Tan X; Fang M; Ren X; Mei H; Shao D; Wang X
    Environ Sci Technol; 2014 Nov; 48(22):13138-45. PubMed ID: 25339547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-organization in precipitation reactions far from the equilibrium.
    Nakouzi E; Steinbock O
    Sci Adv; 2016 Aug; 2(8):e1601144. PubMed ID: 27551688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Garden Membranes in Temperature-Controlled Microfluidic Devices.
    Wang Q; Steinbock O
    Langmuir; 2021 Feb; 37(7):2485-2493. PubMed ID: 33555186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.