These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 32421584)

  • 1. Can models based on phylogeny be used to predict radionuclide activity concentrations in crops?
    Beresford NA; Barnett CL; Guillén J
    J Environ Radioact; 2020 Jul; 218():106263. PubMed ID: 32421584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soil to plant transfer of radionuclides: predicting the fate of multiple radioisotopes in plants.
    Willey NJ
    J Environ Radioact; 2014 Jul; 133():31-4. PubMed ID: 24011856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogeny can be used to make useful predictions of soil-to-plant transfer factors for radionuclides.
    Willey NJ
    Radiat Environ Biophys; 2010 Nov; 49(4):613-23. PubMed ID: 20809227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of natural and artificial radionuclides in chernozem soil/crop system from stationary experiments.
    Sarap NB; Rajačić MM; Đalović IG; Šeremešić SI; Đorđević AR; Janković MM; Daković MZ
    Environ Sci Pollut Res Int; 2016 Sep; 23(17):17761-73. PubMed ID: 27250084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the radioactivity and soil-to-plant transfer factor of (226)Ra, (234)U and (238)U radionuclides in irrigated farms from the northwestern Saudi Arabia.
    Al-Hamarneh IF; Alkhomashi N; Almasoud FI
    J Environ Radioact; 2016 Aug; 160():1-7. PubMed ID: 27108351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils.
    Blaine AC; Rich CD; Sedlacko EM; Hundal LS; Kumar K; Lau C; Mills MA; Harris KM; Higgins CP
    Environ Sci Technol; 2014 Jul; 48(14):7858-65. PubMed ID: 24918303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil-water distribution coefficients and plant transfer factors for (134)Cs, (85)Sr and (65)Zn under field conditions in tropical Australia.
    Twining JR; Payne TE; Itakura T
    J Environ Radioact; 2004; 71(1):71-87. PubMed ID: 14557038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moving radiation protection on from the limitations of empirical concentration ratios.
    Beresford NA; Willey N
    J Environ Radioact; 2019 Nov; 208-209():106020. PubMed ID: 31336261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term behavior of (90)Sr and (137)Cs in the environment: Case studies in Switzerland.
    Corcho-Alvarado JA; Balsiger B; Sahli H; Astner M; Byrde F; Röllin S; Holzer R; Mosimann N; Wüthrich S; Jakob A; Burger M
    J Environ Radioact; 2016 Aug; 160():54-63. PubMed ID: 27132253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can elemental composition data of crop leaves be used to estimate radionuclide transfer to tree leaves?
    Tagami K; Uchida S
    Radiat Environ Biophys; 2010 Nov; 49(4):583-90. PubMed ID: 20703884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer factors of some selected radionuclides (radioactive Cs, Sr, Mn, Co and Zn) from soil to leaf vegetables.
    Ban-Nai T; Muramatsu Y; Yanagisawa K
    J Radiat Res; 1995 Jun; 36(2):143-54. PubMed ID: 7473347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of artificial radionuclides in agricultural plants in the area used for surface nuclear tests.
    Kozhakhanov TE; Lukashenko SN; Larionova NV
    J Environ Radioact; 2014 Nov; 137():217-226. PubMed ID: 25128979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H; Probst A; Liao B
    Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal dynamics of
    Li P; Gong Y; Komatsuzaki M
    Sci Total Environ; 2019 Dec; 697():134060. PubMed ID: 31487588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An overview of BORIS: Bioavailability of Radionuclides in Soils.
    Tamponnet C; Martin-Garin A; Gonze MA; Parekh N; Vallejo R; Sauras-Yera T; Casadesus J; Plassard C; Staunton S; Norden M; Avila R; Shaw G
    J Environ Radioact; 2008 May; 99(5):820-30. PubMed ID: 18061320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear transfer of elements from soil to plants: impact on radioecological modeling.
    Tuovinen TS; Kolehmainen M; Roivainen P; Kumlin T; Makkonen S; Holopainen T; Juutilainen J
    Radiat Environ Biophys; 2016 Aug; 55(3):393-400. PubMed ID: 27262316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fit-for-purpose modelling of radiocaesium soil-to-plant transfer for nuclear emergencies: a review.
    Almahayni T; Beresford NA; Crout NMJ; Sweeck L
    J Environ Radioact; 2019 May; 201():58-66. PubMed ID: 30776579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass loading of soil particles on plant surfaces.
    Pinder JE; McLeod KW
    Health Phys; 1989 Dec; 57(6):935-42. PubMed ID: 2584028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NATURAL RADIONUCLIDES IN AGRICULTURAL PLANTS FROM NORTHERN THAILAND.
    Kritsananuwat R; Kranrod C; Chanyotha S; Ploykrathok T; Sriploy P
    Radiat Prot Dosimetry; 2019 Oct; 184(3-4):397-399. PubMed ID: 31038710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the mitigation speeds of
    Nguyen Van T; Thi Ngoc HP; Xuan SV; Huu TT; Phong THN; Le Cong H
    Ecotoxicol Environ Saf; 2019 Mar; 169():216-224. PubMed ID: 30448704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.