These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 32421642)

  • 1. Automatic discovery of resource-restricted Convolutional Neural Network topologies for myoelectric pattern recognition.
    Olsson AE; Björkman A; Antfolk C
    Comput Biol Med; 2020 May; 120():103723. PubMed ID: 32421642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myoelectric Pattern Recognition Using Gramian Angular Field and Convolutional Neural Networks for Muscle-Computer Interface.
    Fan J; Wen J; Lai Z
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lw-CNN-Based Myoelectric Signal Recognition and Real-Time Control of Robotic Arm for Upper-Limb Rehabilitation.
    Guo B; Ma Y; Yang J; Wang Z; Zhang X
    Comput Intell Neurosci; 2020; 2020():8846021. PubMed ID: 33456452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensor Fusion for Myoelectric Control Based on Deep Learning With Recurrent Convolutional Neural Networks.
    Wang W; Chen B; Xia P; Hu J; Peng Y
    Artif Organs; 2018 Sep; 42(9):E272-E282. PubMed ID: 30003559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Subject-Transfer Framework Based on Single-Trial EMG Analysis Using Convolutional Neural Networks.
    Kim KT; Guan C; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):94-103. PubMed ID: 31613773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Completely Automated CNN Architecture Design Based on Blocks.
    Sun Y; Xue B; Zhang M; Yen GG
    IEEE Trans Neural Netw Learn Syst; 2020 Apr; 31(4):1242-1254. PubMed ID: 31247572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification complexity in myoelectric pattern recognition.
    Nilsson N; Håkansson B; Ortiz-Catalan M
    J Neuroeng Rehabil; 2017 Jul; 14(1):68. PubMed ID: 28693533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Efficient and Accurate Iris Recognition Algorithm Based on a Novel Condensed 2-ch Deep Convolutional Neural Network.
    Liu G; Zhou W; Tian L; Liu W; Liu Y; Xu H
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34071850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-User Electromyography Pattern Recognition Based on a Novel Spatial-Temporal Graph Convolutional Network.
    Xu M; Chen X; Ruan Y; Zhang X
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():72-82. PubMed ID: 38090843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance Evaluation of Convolutional Neural Network for Hand Gesture Recognition Using EMG.
    Asif AR; Waris A; Gilani SO; Jamil M; Ashraf H; Shafique M; Niazi IK
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification.
    Sun Y; Xue B; Zhang M; Yen GG; Lv J
    IEEE Trans Cybern; 2020 Sep; 50(9):3840-3854. PubMed ID: 32324588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Density Surface EMG-Based Gesture Recognition Using a 3D Convolutional Neural Network.
    Chen J; Bi S; Zhang G; Cao G
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial-Frequency Feature Learning and Classification of Motor Imagery EEG Based on Deep Convolution Neural Network.
    Miao M; Hu W; Yin H; Zhang K
    Comput Math Methods Med; 2020; 2020():1981728. PubMed ID: 32765639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EMG-Based Estimation of Limb Movement Using Deep Learning With Recurrent Convolutional Neural Networks.
    Xia P; Hu J; Peng Y
    Artif Organs; 2018 May; 42(5):E67-E77. PubMed ID: 29068076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization.
    Zhao Y; Ge F; Liu T
    Med Image Anal; 2018 Jul; 47():111-126. PubMed ID: 29705574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Event-Driven Spiking Convolutional Neural Network for Electromyography Pattern Recognition.
    Xu M; Chen X; Sun A; Zhang X; Chen X
    IEEE Trans Biomed Eng; 2023 Sep; 70(9):2604-2615. PubMed ID: 37030849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of the Best Set of Features for sEMG-Based Hand Gesture Recognition Applying a CNN Architecture.
    Sandoval-Espino JA; Zamudio-Lara A; Marbán-Salgado JA; Escobedo-Alatorre JJ; Palillero-Sandoval O; Velásquez-Aguilar JG
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments.
    Baldominos A; Saez Y; Isasi P
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29690587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.