These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32421861)

  • 1. Increased above-ground resource allocation is a likely precursor for independent evolutionary origins of annuality in the Pooideae grass subfamily.
    Lindberg CL; Hanslin HM; Schubert M; Marcussen T; Trevaskis B; Preston JC; Fjellheim S
    New Phytol; 2020 Oct; 228(1):318-329. PubMed ID: 32421861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Successive evolutionary steps drove Pooideae grasses from tropical to temperate regions.
    Zhong J; Robbett M; Poire A; Preston JC
    New Phytol; 2018 Jan; 217(2):925-938. PubMed ID: 29091285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of Cold Acclimation and Its Role in Niche Transition in the Temperate Grass Subfamily Pooideae.
    Schubert M; Grønvold L; Sandve SR; Hvidsten TR; Fjellheim S
    Plant Physiol; 2019 May; 180(1):404-419. PubMed ID: 30850470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convergent evolution of the annual life history syndrome from perennial ancestors.
    Hjertaas AC; Preston JC; Kainulainen K; Humphreys AM; Fjellheim S
    Front Plant Sci; 2022; 13():1048656. PubMed ID: 36684797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation.
    Linder HP; Lehmann CER; Archibald S; Osborne CP; Richardson DM
    Biol Rev Camb Philos Soc; 2018 May; 93(2):1125-1144. PubMed ID: 29230921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-locus analysis of phylogenetic relationships within grass subfamily Pooideae (Poaceae) inferred from sequences of nuclear single copy gene regions compared with plastid DNA.
    Hochbach A; Schneider J; Röser M
    Mol Phylogenet Evol; 2015 Jun; 87():14-27. PubMed ID: 25804934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variation in gene regulation underlying annual and perennial flowering in Arabideae species.
    Friedman J
    Mol Ecol; 2017 Jul; 26(13):3324-3326. PubMed ID: 28632342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Did gene family expansions during the Eocene-Oligocene boundary climate cooling play a role in Pooideae adaptation to cool climates?
    Sandve SR; Fjellheim S
    Mol Ecol; 2010 May; 19(10):2075-88. PubMed ID: 20406386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylotranscriptomics Resolves the Phylogeny of Pooideae and Uncovers Factors for Their Adaptive Evolution.
    Zhang L; Zhu X; Zhao Y; Guo J; Zhang T; Huang W; Huang J; Hu Y; Huang CH; Ma H
    Mol Biol Evol; 2022 Feb; 39(2):. PubMed ID: 35134207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of the miR5200-FLOWERING LOCUS T flowering time regulon in the temperate grass subfamily Pooideae.
    McKeown M; Schubert M; Preston JC; Fjellheim S
    Mol Phylogenet Evol; 2017 Sep; 114():111-121. PubMed ID: 28603035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous capitulum structure and monoecy may confer flexibility in sex allocation and life history evolution in the Ifloga lineage of paper daisies (Compositae: Gnaphalieae).
    Bergh NG; Verboom GA
    Am J Bot; 2011 Jul; 98(7):1113-27. PubMed ID: 21700801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life History Variation as a Model for Understanding Trade-Offs in Plant-Environment Interactions.
    Lundgren MR; Des Marais DL
    Curr Biol; 2020 Feb; 30(4):R180-R189. PubMed ID: 32097648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of seasonal flowering responses in adaptation of grasses to temperate climates.
    Fjellheim S; Boden S; Trevaskis B
    Front Plant Sci; 2014; 5():431. PubMed ID: 25221560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogeny determines flower size-dependent sex allocation at flowering in a hermaphroditic family.
    Teixido AL; Guzmán B; Staggemeier VG; Valladares F
    Plant Biol (Stuttg); 2017 Nov; 19(6):963-972. PubMed ID: 28727278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogeny of Poaceae subfamily Pooideae based on chloroplast ndhF gene sequences.
    Catalán P; Kellogg EA; Olmstead RG
    Mol Phylogenet Evol; 1997 Oct; 8(2):150-66. PubMed ID: 9299221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenomics of the genus Glycine sheds light on polyploid evolution and life-strategy transition.
    Zhuang Y; Wang X; Li X; Hu J; Fan L; Landis JB; Cannon SB; Grimwood J; Schmutz J; Jackson SA; Doyle JJ; Zhang XS; Zhang D; Ma J
    Nat Plants; 2022 Mar; 8(3):233-244. PubMed ID: 35288665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are diversification rates and chromosome evolution in the temperate grasses (Pooideae) associated with major environmental changes in the Oligocene-Miocene?
    Pimentel M; Escudero M; Sahuquillo E; Minaya MÁ; Catalán P
    PeerJ; 2017; 5():e3815. PubMed ID: 28951814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for an Early Origin of Vernalization Responsiveness in Temperate Pooideae Grasses.
    McKeown M; Schubert M; Marcussen T; Fjellheim S; Preston JC
    Plant Physiol; 2016 Sep; 172(1):416-26. PubMed ID: 27474116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic relationships and character evolution analysis of Saxifragales using a supermatrix approach.
    Soltis DE; Mort ME; Latvis M; Mavrodiev EV; O'Meara BC; Soltis PS; Burleigh JG; Rubio de Casas R
    Am J Bot; 2013 May; 100(5):916-29. PubMed ID: 23629845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary associations between polyploidy, clonal reproduction, and perenniality in the angiosperms.
    Van Drunen WE; Husband BC
    New Phytol; 2019 Nov; 224(3):1266-1277. PubMed ID: 31215649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.