BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 32422048)

  • 21. Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement.
    Deng YH; Yang ZJ; He J
    Opt Express; 2018 Nov; 26(24):31116-31128. PubMed ID: 30650702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Planar Double-Epsilon-Near-Zero Cavities for Spontaneous Emission and Purcell Effect Enhancement.
    Caligiuri V; Palei M; Imran M; Manna L; Krahne R
    ACS Photonics; 2018 Jun; 5(6):2287-2294. PubMed ID: 31867410
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amplified Plasmonic Forces from DNA Origami-Scaffolded Single Dyes in Nanogaps.
    Rocchetti S; Ohmann A; Chikkaraddy R; Kang G; Keyser UF; Baumberg JJ
    Nano Lett; 2023 Jul; 23(13):5959-5966. PubMed ID: 37364270
    [TBL] [Abstract][Full Text] [Related]  

  • 24. All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules.
    Regmi R; Berthelot J; Winkler PM; Mivelle M; Proust J; Bedu F; Ozerov I; Begou T; Lumeau J; Rigneault H; García-Parajó MF; Bidault S; Wenger J; Bonod N
    Nano Lett; 2016 Aug; 16(8):5143-51. PubMed ID: 27399057
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Substrate engineering of plasmonic nanocavity antenna modes.
    Xiong X; Clarke D; Lai Y; Bai P; Png CE; Wu L; Hess O
    Opt Express; 2023 Jan; 31(2):2345-2358. PubMed ID: 36785250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing the in-Plane Near-Field Enhancement Limit in a Plasmonic Particle-on-Film Nanocavity with Surface-Enhanced Raman Spectroscopy of Graphene.
    Liu D; Wu T; Zhang Q; Wang X; Guo X; Su Y; Zhu Y; Shao M; Chen H; Luo Y; Lei D
    ACS Nano; 2019 Jul; 13(7):7644-7654. PubMed ID: 31244032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Light-induced symmetry breaking for enhancing second-harmonic generation from an ultrathin plasmonic nanocavity.
    Li GC; Lei D; Qiu M; Jin W; Lan S; Zayats AV
    Nat Commun; 2021 Jul; 12(1):4326. PubMed ID: 34267205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elevating Surface-Enhanced Infrared Absorption with Quantum Mechanical Effects of Plasmonic Nanocavities.
    Huang G; Liu K; Shi G; Guo Q; Li X; Liu Z; Ma W; Wang T
    Nano Lett; 2022 Aug; 22(15):6083-6090. PubMed ID: 35866846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmonic Purcell effect reveals obliquely ordered phosphorescent emitters in Organic LEDs.
    Mac Ciarnain R; Michaelis D; Wehlus T; Rausch AF; Wehrmeister S; Schmidt TD; Brütting W; Danz N; Bräuer A; Tünnermann A
    Sci Rep; 2017 May; 7(1):1826. PubMed ID: 28500306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced Two-Photon Photochromism in Metasurface Perfect Absorbers.
    Liu X; Jia X; Fischer M; Huang Z; Smith DR
    Nano Lett; 2018 Oct; 18(10):6181-6187. PubMed ID: 30204445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction of nanoparticle-on-mirror nanocavities and their applications in plasmon-enhanced spectroscopy.
    Peng W; Zhou JW; Li ML; Sun L; Zhang YJ; Li JF
    Chem Sci; 2024 Feb; 15(8):2697-2711. PubMed ID: 38404398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purcell-enhanced photoluminescence of few-layer MoS
    Kim H; Moon S; Kim J; Nam SH; Kim DH; Lee JS; Kim KH; Kang ESH; Ahn KJ; Kim T; Shin C; Suh YD
    Nanoscale; 2021 Mar; 13(10):5316-5323. PubMed ID: 33656502
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deterministic coupling of quantum emitters in WSe
    Iff O; Lundt N; Betzold S; Tripathi LN; Emmerling M; Tongay S; Lee YJ; Kwon SH; Höfling S; Schneider C
    Opt Express; 2018 Oct; 26(20):25944-25951. PubMed ID: 30469688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Broadband Raman scattering enhancement with reduced heat generation in a dielectric-metal hybrid nanocavity.
    Liu S; Li J; Wang H; Tao Q; Zhong L; Lu X
    Opt Express; 2021 Jun; 29(13):20092-20104. PubMed ID: 34266106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring the Magnetic and Electric Side of Light through Plasmonic Nanocavities.
    Ernandes C; Lin HJ; Mortier M; Gredin P; Mivelle M; Aigouy L
    Nano Lett; 2018 Aug; 18(8):5098-5103. PubMed ID: 30001486
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultralow-threshold six-photon-excited upconversion lasing in a plasmonic microcavity.
    Tang Z; Zheng H; Wang Y; Wang R; Qiu Z; Shen Y; Zhou J; Su S; Li L; Zhu H
    Nanoscale; 2022 May; 14(20):7589-7595. PubMed ID: 35514279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Few-emitter lasing in single ultra-small nanocavities.
    Ojambati OS; Arnardóttir KB; Lovett BW; Keeling J; Baumberg JJ
    Nanophotonics; 2024 Jun; 13(14):2679-2686. PubMed ID: 38836101
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrafast spontaneous emission source using plasmonic nanoantennas.
    Hoang TB; Akselrod GM; Argyropoulos C; Huang J; Smith DR; Mikkelsen MH
    Nat Commun; 2015 Jul; 6():7788. PubMed ID: 26212857
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Emission enhancement within gold spherical nanocavity arrays.
    Jose B; Steffen R; Neugebauer U; Sheridan E; Marthi R; Forster RJ; Keyes TE
    Phys Chem Chem Phys; 2009 Dec; 11(46):10923-33. PubMed ID: 19924327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.