These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32422048)

  • 41. Light Emission from Plasmonic Nanostructures Enhanced with Fluorescent Nanodiamonds.
    Zhao J; Cheng Y; Shen H; Hui YY; Wen T; Chang HC; Gong Q; Lu G
    Sci Rep; 2018 Feb; 8(1):3605. PubMed ID: 29483560
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Water-Wettable Open Plasmonic Nanocavities for Ultrasensitive Molecular Detections in Multiple Phases.
    Whang K; Jo Y; Lee H; Kim D; Kang T
    Nano Lett; 2021 Jul; 21(14):6194-6201. PubMed ID: 34254801
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatially-Controllable Hot Spots for Plasmon-Enhanced Second-Harmonic Generation in AgNP-ZnO Nanocavity Arrays.
    Shen S; Gao M; Ban R; Chen H; Wang X; Qian L; Li J; Yang Z
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30563152
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plasmonic modes of extreme subwavelength nanocavities.
    Petschulat J; Helgert C; Steinert M; Bergner N; Rockstuhl C; Lederer F; Pertsch T; Tünnermann A; Kley EB
    Opt Lett; 2010 Aug; 35(16):2693-5. PubMed ID: 20717426
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Plasmonic metasurface cavity for simultaneous enhancement of optical electric and magnetic fields in deep subwavelength volume.
    Hong J; Kim SJ; Kim I; Yun H; Mun SE; Rho J; Lee B
    Opt Express; 2018 May; 26(10):13340-13348. PubMed ID: 29801359
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrasmall Mode Volumes in Plasmonic Cavities of Nanoparticle-On-Mirror Structures.
    Huang S; Ming T; Lin Y; Ling X; Ruan Q; Palacios T; Wang J; Dresselhaus M; Kong J
    Small; 2016 Oct; 12(37):5190-5199. PubMed ID: 27515573
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evanescent field enhancement due to plasmonic resonances of a metamaterial slab.
    Chiu KP; Kao TS; Tsai DP
    J Microsc; 2008 Feb; 229(Pt 2):313-9. PubMed ID: 18304091
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intrinsic luminescence blinking from plasmonic nanojunctions.
    Chen W; Roelli P; Ahmed A; Verlekar S; Hu H; Banjac K; Lingenfelder M; Kippenberg TJ; Tagliabue G; Galland C
    Nat Commun; 2021 May; 12(1):2731. PubMed ID: 34021133
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nonlinear pulsed excitation of high-Q optical modes of plasmonic nanocavities.
    Biris CG; Panoiu NC
    Opt Express; 2010 Aug; 18(16):17165-79. PubMed ID: 20721105
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plasmon-enhanced second-harmonic generation from hybrid ZnO-covered silver-bowl array.
    Yang M; Shen S; Wang X; Yu B; Huang S; Xu D; Hu J; Yang Z
    J Phys Condens Matter; 2016 Jun; 28(21):214003. PubMed ID: 27145724
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Manipulating the light-matter interactions in plasmonic nanocavities at 1 nm spatial resolution.
    Wen BY; Wang JY; Shen TL; Zhu ZW; Guan PC; Lin JS; Peng W; Cai WW; Jin H; Xu QC; Yang ZL; Tian ZQ; Li JF
    Light Sci Appl; 2022 Jul; 11(1):235. PubMed ID: 35882840
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultrasmall Mode Volume Hyperbolic Nanocavities for Enhanced Light-Matter Interaction at the Nanoscale.
    Indukuri SRKC; Bar-David J; Mazurski N; Levy U
    ACS Nano; 2019 Oct; 13(10):11770-11780. PubMed ID: 31589409
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Imaging and controlling plasmonic interference fields at buried interfaces.
    Lummen TTA; Lamb RJ; Berruto G; LaGrange T; Dal Negro L; García de Abajo FJ; McGrouther D; Barwick B; Carbone F
    Nat Commun; 2016 Oct; 7():13156. PubMed ID: 27725670
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microcavity-Mediated Spectrally Tunable Amplification of Absorption in Plasmonic Nanoantennas.
    Huang Q; Cunningham BT
    Nano Lett; 2019 Aug; 19(8):5297-5303. PubMed ID: 31315400
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plasmonic antenna effects on photochemical reactions.
    Gao S; Ueno K; Misawa H
    Acc Chem Res; 2011 Apr; 44(4):251-60. PubMed ID: 21381706
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultrasensitive Three-Dimensional Orientation Imaging of Single Molecules on Plasmonic Nanohole Arrays Using Second Harmonic Generation.
    Sahu SP; Mahigir A; Chidester B; Veronis G; Gartia MR
    Nano Lett; 2019 Sep; 19(9):6192-6202. PubMed ID: 31387355
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantitative determination of localized tissue oxygen concentration in vivo by two-photon excitation phosphorescence lifetime measurements.
    Mik EG; van Leeuwen TG; Raat NJ; Ince C
    J Appl Physiol (1985); 2004 Nov; 97(5):1962-9. PubMed ID: 15247164
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two-Photon Phosphorescence Lifetime Microscopy.
    Abbasizadeh N; Spencer JA
    Adv Exp Med Biol; 2021; 3233():63-82. PubMed ID: 34053023
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Strong Optomechanical Interaction in Hybrid Plasmonic-Photonic Crystal Nanocavities with Surface Acoustic Waves.
    Lin TR; Lin CH; Hsu JC
    Sci Rep; 2015 Sep; 5():13782. PubMed ID: 26346448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.